A*算法与八数码问题(numpy)

在这里插入图片描述

努力是为了不平庸~

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。

目录

一、引言 

二、思路

1. 确定问题和目标:

2. 确定算法和数据结构:

3. 编写代码框架

4. 实现辅助函数:

5. 实现主函数:

6. 实现搜索算法:

7. 实现状态操作函数:

8. 进行测试和调试:

 三、代码与函数

A、代码步骤的方法、目的及意义

①导入必要的库:

②定义open表与close表以及初始状态和目标状态:

③定义节点类:

④定义辅助函数,实现节点类:

⑤定义函数get_reverse_num(state)用于计算逆序数,判断解的存在性。

⑥定义函数display(cur_node)用于输出状态及深度信息。

⑦定义函数is_in_list(alist, state)用于检查状态是否在列表中。

⑧定义排序的权值函数delta(node)。

⑨输入初始状态和目标状态:

⑩判断是否存在可行解:

⑪启发式搜索的实现:

B、函数构造和作用

1. 函数get_reverse_num(state):

2. 函数display(cur_node):

3. 函数is_in_list(alist, state):

4. 函数delta(node):

四、state和parent的属性和作用

1.state属性:

2. parent属性:

五、解题代码


一、引言 

    A*算法是一种启发式图搜索算法,其特点在于对估价函数的定义上。对于一般的启发式图搜索,总是选择估价函数f值最小的节点作为扩展节点。因此,f是根据需要找到一条最小代价路径的观点来估算节点的,所以,可考虑每个节点n的估价函数值为两个分量:从起始节点到节点n的实际代价以及从节点n到达目标节点的估价代价。

 以8数码问题为例实现A*算法的求解程序。

 估价函数f(n) = g(n) + h(n)

g(n)=d(n)——结点n在搜索树中的深度

h(n)可选择h1(n)——结点n中“不在位”的数码个数 或 h2(n) =p(n)= 将牌“不在位”的距离和

二、思路

1. 确定问题和目标:

   八数码问题,即通过移动数字将初始状态转变为目标状态。目标是编写能够自动求解八数码问题的程序。

2. 确定算法和数据结构:

   选择A*算法,然后确定所需的数据结构,如节点类、状态表示方法等。

3. 编写代码框架

   ①定义必要的变量和数据结构,如open表、close表、初始状态和目标状态等。

   ②创建节点类,并定义节点类的属性和方法。

4. 实现辅助函数:

   根据代码中的需要,实现辅助函数,如find_pos函数用于找到数字在状态中的位置。

5. 实现主函数:

   ①编写主函数,处理用户输入和输出。

   ②获取用户输入的初始状态和目标状态。

   ③检查可行解的存在性,判断是否可以通过移动数字从初始状态到达目标状态。

   ④如果可行解存在,开始启发式搜索过程。

6. 实现搜索算法:

   ①在主函数中编写启发式搜索的逻辑。

   ②创建open表和close表,并初始化。

   ③使用循环迭代进行搜索,直到找到可行解或无解。

   ④在每次迭代中,根据算法规则进行状态扩展和判断,并更新open表和close表。

7. 实现状态操作函数:

   根据算法需求,实现状态操作函数,如移动空白格、判断状态是否在表中等。

8. 进行测试和调试:

   ①编写测试用例,包括不同的初始状态和目标状态。

   ②运行代码,并观察输出结果是否符合预期。

   ③根据需要进行调试和修正代码错误。

 三、代码与函数

A、代码步骤的方法、目的及意义

①导入必要的库:

   这里使用了NumPy库,它提供了Python中对多维数组进行高效操作的功能。

②定义open表与close表以及初始状态和目标状态:

   open表用于存放待扩展的节点,close表用于存放已扩展的节点。start_state和target_state分别表示初始状态和目标状态,都是3x3的二维数组。

③定义节点类:

   这里定义了一个名为Node的类,表示搜索过程中的节点。该类具有一些属性和方法,用于存储节点状态、计算代价等信息。

④定义辅助函数,实现节点类:

   find_pos(self, state, num):在状态state中查找值为num的元素的位置。

   __init__(self, state, prt=[]):节点类的构造函数,初始化节点的状态、父节点、代价等信息。

   moveto(self, x, y):将空白格移动到指定位置(x, y),生成新的状态。

⑤定义函数get_reverse_num(state)用于计算逆序数,判断解的存在性。

   意义:逆序数用于判断八数码问题是否有可行解。

⑥定义函数display(cur_node)用于输出状态及深度信息。

   意义:用于展示搜索过程中每个节点的状态、搜索深度、代价等信息。

⑦定义函数is_in_list(alist, state)用于检查状态是否在列表中。

   意义:用于判断一个状态是否已经在open表或close表中。

⑧定义排序的权值函数delta(node)。

意义:用于指定节点的排序权值,这里使用节点的F值作为排序依据。

⑨输入初始状态和目标状态:

   意义:使用输入函数逐个获取用户输入的初始状态和目标状态。

⑩判断是否存在可行解:

    使用逆序数判断八数码问题是否有可行解。如果逆序数的奇偶性不同,则不存在可行解。

⑪启发式搜索的实现:

    在启发式搜索中,使用open表存放待扩展的节点,close表存放已扩展的节点。通过不断扩展节点,并将其加入open表和close表,最终找到可行解。搜索过程中,使用delta函数对open表中的节点按照F值进行排序

以上是对代码的关键步骤的分析。

B、函数构造和作用

1. 函数get_reverse_num(state):

   构成:

          ①参数:state,表示一个状态的二维数组。

          ②返回值:逆序数,表示状态中元素的逆序对数量。

   作用:该函数用于计算逆序数,判断八数码问题是否有可行解。通过将非空元素按顺序拼接成字符串s,然后统计在s中出现的逆序对数量,最终得到逆序数。

2. 函数display(cur_node):

   构成:

          ①参数:cur_node,表示当前节点对象。

          ②作用:该函数用于展示搜索过程中每个节点的状态、搜索深度、代价等信息。首先,它通过跟踪节点的父节点,将搜索路径中的所有节点存储在列表alist中。然后,它按照搜索路径的顺序遍历alist,打印每个节点的搜索深度G、状态state、代价信息G、H、F。

3. 函数is_in_list(alist, state):

   构成:

           ①参数:alist,表示一个节点列表;state,表示一个状态的二维数组。

           ②返回值:如果状态state在列表alist中存在,则返回对应的节点对象;否则返回-1。

   作用:该函数用于判断一个状态是否已经在open表或close表中。它遍历列表alist中的节点对象,将每个节点的状态与输入的state进行比较。如果找到匹配的状态,则返回对应的节点对象;否则返回-1,表示状态不在列表中。

4. 函数delta(node):

   构成:

            ①参数:node,表示一个节点对象。

            ②返回值:节点的代价F。

   作用:该函数用于作为排序的权值函数。在启发式搜索中,根据节点的代价F值对open表中的节点进行排序。

四、state和parent的属性和作用

state和parent是节点类中的两个重要属性

1.state属性:

   构成:state是一个二维数组,表示节点对应的状态。

   作用:state记录当前节点状态,即一个具体的排列。通过不同的状态组合,可以表示不同的八数码棋盘布局。

   例:在代码中的使用:通过current_node.state可以获取当前节点的状态。

2. parent属性:

   构成:parent是一个列表,存储指向父节点的引用。

   作用:parent记录了当前节点的父节点,即在搜索树中指向当前节点的上一层节点。

   例:在代码中的使用:通过current_node.parent可以获取当前节点的父节点。这对于回溯搜索路径和展示解决方案非常有用,因为可以通过跟踪父节点,从目标节点一直追溯到初始节点,形成搜索路径。

在启发式搜索中,每个节点都通过移动空白格生成新的状态,并将其作为子节点添加到搜索树中。通过state和parent属性的设置和更新,可以构建搜索树,跟踪搜索路径,并最终找到解决八数码问题的路径。

五、解题代码

import numpy as np

# 定义open表与close表
open_list = []  # 存放待扩展的节点
close_list = []  # 存放已扩展的节点
start_state = np.zeros((3, 3), dtype=int)  # 初始状态,3×3矩阵,先全设为零
target_state = np.zeros((3, 3), dtype=int)  # 目标状态,3×3矩阵,先全设为零

# 定义节点类
# 定义了一个名为Node的类,表示搜索过程中的节点。该类具有一些属性和方法,用于存储节点状态、计算代价等信息。
class Node:
    G = 0  # 起点到当前节点的最短路径代价值
    H = 0  # 当前节点到目标节点的最短路径代价值
    F = 0  # F = G + H,起点经过当前节点到目标节点的最短路径的总代价值
    state = np.zeros((3, 3), dtype=int)  # 一个二维数组,记录了当前节点的状态,即八数码问题中的一个具体排列。通过不同的状态组合,可以表示不同的八数码棋盘布局。
    parent = []  # 一个列表,记录了当前节点的父节点,即在搜索树中指向当前节点的上一层节点。


    #find_pos(self, state, num)是节点类中的一个方法,用于找到指定数字在状态中的位置
    # self:表示节点对象自身。  state:表示一个状态的二维数组。  num:表示要查找的数字。  返回一个包含两个元素的元组(i, j),表示数字num在状态state中的行索引和列索引。
    def find_pos(self, state, num):             # 在状态state中查找值为num的元素的位置x,y
        for i in range(len(state)):
            for j in range(len(state[i])):
                if state[i][j] == num:
                    return i, j

    # 节点类的构造函数,初始化节点的状态、父节点、代价等信息。
    def __init__(self, state, prt=[]):
        self.state = state
        if prt:
            self.parent = prt
            self.G = prt.G + 1
        for i in range(len(state)):
            for j in range(len(state[i])):
                x, y = self.find_pos(target_state, state[i][j])
                self.H = self.H + abs(x - i) + abs(y - j)
        self.F = self.G * 1 + self.H * 10

    # 将空白格移动到指定位置(x, y),生成新的状态。
    def moveto(self, x, y):
        x0, y0 = self.find_pos(self.state, 0)
        newstate = self.state.copy()
        tmp = newstate[x0][y0]
        newstate[x0][y0] = newstate[x][y]
        newstate[x][y] = tmp
        return newstate

# 得到逆序数,用于判断解的存在性
# 逆序数用于判断八数码问题是否有可行解
def get_reverse_num(state):
    ans = 0
    s = ""
    for i in range(len(state)):
        for j in range(len(state[i])):
            if not state[i][j] == 0:
                s += str(state[i][j])

    for i in range(len(s)):
        for j in range(i):
            if s[j] > s[i]:
                ans += 1
    return ans

# 输出状态及深度信息
# 用于展示搜索过程中每个节点的状态、搜索深度、代价等信息
def display(cur_node):
    alist = []
    tmp = cur_node
    while tmp:
        alist.append(tmp)
        tmp = tmp.parent
    alist.reverse()
    for node in alist:
        print("搜索深度%d" % node.G)
        print(node.state)
        print("G={0},H={1},F={2}".format(node.G, node.H, node.F))
        print()
    print("总共探索了%d次" % int(node.G + 1))

# 检查state状态是否在list中(可能是open或close表)
# 用于判断一个状态是否已经在open表或close表中
def is_in_list(alist, state):
    for stat in alist:
        if (stat.state == state).all():
            return stat
    return -1

# 排序的权值函数
# 用于指定节点的排序权值,这里使用节点的F值作为排序依据
def delta(node):
    return node.F

# 输入初始与目标状态
# 使用输入函数逐个获取用户输入的初始状态和目标状态
for i in range(len(start_state)):
    for j in range(len(start_state[i])):
        start_state[i][j] = input("start_state" + "(" + str(i + 1) + "," + str(j + 1) + "):")

print("the start state is:")
print(start_state)

for i in range(len(target_state)):
    for j in range(len(target_state)):
        target_state[i][j] = input("target_state" + "(" + str(i + 1) + "," + str(j + 1) + "):")

print("the target state is:")
print(target_state)

# 可行解判断
# 使用逆序数判断八数码问题是否有可行解。如果逆序数的奇偶性不同,则不存在可行解
if get_reverse_num(target_state) % 2 != get_reverse_num(start_state) % 2:
    print(get_reverse_num(target_state))
    print(get_reverse_num(start_state))
    print("找不到可行解!")
    exit(-1)

# 可行解存在时,开始启发搜索
# 在启发式搜索中,使用open表存放待扩展的节点,close表存放已扩展的节点。
# 通过不断扩展节点,并将其加入open表和close表,最终找到可行解。搜索过程中,使用delta函数对open表中的节点按照F值进行排序
open_list.append(Node(start_state))
while open_list:
    current_node = open_list.pop(0)  # 从open表中取出F值最小的节点进行扩展
    close_list.append(current_node)  # 将扩展的节点加入close表
    # 当open表中取出的恰好为目标状态时,找到可行解
    if (current_node.state == target_state).all():
        print("可行解已找到!")
        display(current_node)
        exit(0)
    # 否则对当前节点进行拓展
    x, y = current_node.find_pos(current_node.state, 0)  # 找到空白格的位置
    for [x_, y_] in [[x + 1, y], [x - 1, y], [x, y + 1], [x, y - 1]]:
        if 0 <= x_ < len(start_state) and 0 <= y_ < len(start_state):
            new_state = current_node.moveto(x_, y_)  # 移动空白格得到新状态
            # 判断新状态是否在close表
            if is_in_list(close_list, new_state) == -1:
                # 如果不在close表
                if is_in_list(open_list, new_state) == -1:
                    # 如果也不在open表,则将其加入open表
                    open_list.append(Node(new_state, current_node))
                else:
                    # 如果open表中已存在这种状态,则选取G值较小的
                    index = is_in_list(open_list, new_state)
                    if current_node.G + 1 < open_list[index].G:
                        # 如果新路线更好,则放弃旧路线而选择新路线
                        open_list.pop(index)
                        open_list.append(Node(new_state, current_node))
                    # 否则忽略
    # 对open表按F值从小到大进行排序
    open_list.sort(key=delta)

  • 10
    点赞
  • 70
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
A*算法求解八数码问题 1、A*算法基本思想: 1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。 2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。 3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。 4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。 5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。 2、程序运行基本环境: 源程序所使用编程语言:C# 编译环境:VS2010,.net framework 4.0 运行环境:.net framework 4.0 3、程序运行界面 可使用程序中的test来随机生成源状态与目标状态 此停顿过程中按Enter即可使程序开始运行W(n)部分; 此停顿部分按Enter后程序退出; 4、无解问题运行情况 这里源程序中是先计算源状态与目标状态的逆序对的奇偶性是否一致来判断是否有解的。下面是无解时的运行画面: 输入无解的一组源状态到目标状态,例如: 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 8 7 0 运行画面如下: 5、性能比较 对于任一给定可解初始状态,状态空间有9!/2=181440个状态;当采用不在位棋子数作为启发函数时,深度超过20时,算法求解速度较慢; 其中启发函数P(n)与W(n)的含义如下: P(n): 任意节点与目标结点之间的距离; W(n): 不在位的将牌数; 源状态 目标状态 P(n) 生成节点数 W(n) 生成节点数 P(n) 扩展节点数 W(n) 扩展节点数 2 8 3 1 6 4 7 0 5 1 2 3 8 0 4 7 6 5 11 13 5 6 1 2 3 8 0 4 7 6 5 0 1 3 8 2 4 7 6 5 6 6 2 2 4 8 2 5 1 6 7 0 3 7 4 2 8 5 6 1 3 0 41 79 22 46 6 2 5 8 7 0 3 1 4 0 3 6 7 1 8 4 5 2 359 10530 220 6769 7 6 3 1 0 4 8 5 2 2 8 7 1 3 4 6 5 0 486 8138 312 5295 下图是解决随机生成的100中状态中,P(n)生成函数的生成节点与扩展节点统计图: 由上图可知,P(n)作为启发函数,平均生成节点数大约在1000左右,平均扩展节点数大约在600左右; 下图是解决随机生成的100中状态中,W(n)生成函数的生成节点与扩展节点统计图: 由上图可知,W (n)作为启发函数,平均生成节点数大约在15000左右,是P(n)作为启发函数时的平均生成节点的15倍;W (n)作为启发函数,平均扩展节点数大约在10000左右,是P(n)作为启发函数时的平均扩展节点的15倍; 下图是解决随机生成的100中状态中,两个生成函数的生成节点与扩展节点统计图: 由上述图表可以看到,将P(n)作为启发函数比将W(n)作为启发函数时,生成节点数与扩展节点数更稳定,相比较来说,采用P(n)作为启发函数的性能比采用W(n)作为启发函数的性能好。 6、源代码说明 1)AStar-EightDigital-Statistics文件夹:用来随机生成100个状态,并对这100个状态分别用P(n)与W(n)分别作为启发函数算出生成节点以及扩展节点,以供生成图表使用;运行界面如下: 2)Test文件夹:将0-8这9个数字随机排序,用来随机生成源状态以及目标状态的;运行界面如下: 3)AStar-EightDigital文件夹:输入源状态和目标状态,程序搜索出P(n)与W(n)分别作为启发函数时的生成节点数以及扩展节点数,并给出从源状态到目标状态的移动步骤;运行界面如下: 提高了运行速度的几处编码思想: 1、 在维护open以及close列表的同时,也维护一个类型为hashtable的open以及close列表,主要用来提高判断当前节点是否在open列表以及close列表中出现时的性能; 2、 对于每个状态,按照从左到右,从上到下,依次将数字拼接起来,形成一个唯一标识identify,通过该标识,可以直接判断两个状态是否是同一个状态,而不需要循环判断每个位置上的数字是否相等 3、 在生成每个状态的唯一标识identify时,同时计算了该状态的空格所在位置,通过空格所在位置,可以直接判断能否进行上移、下移、左移、右移等动作; 4、 只计算初始节点的h值,其它生成的节点的h值是根据当前状态的h值、移动的操作等计算后得出的,规则如下: a) 采用W(n)这种方式,不在位置的将牌数,共有以下3中情况: i. 该数字原不在最终位置上,移动后,在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值-1 ii. 该数字原在最终位置上,移动后,不在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值 +1 iii. 该数字原不在最终位置上,移动后,还是不在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值 iv. 该数字原在最终位置上,移动后,还在其最终位置 这种情况不存在 b) 采用P(n)这种方式,节点与目标距离,可通过下面3步完成 i. 首先计算在原位置时,与目标位置的距离,命名为Distance1 ii. 移动后,计算当前位置与目标位置的距离,命名为Distance2 iii. 计算子节点的h值: 子节点的h值 = 父节点的h值- Distance1+ Distance2 5、 在任意状态中的每个数字和目标状态中同一数字的相对距离就有9*9种,可以先将这些相对距离算出来,用一个矩阵存储,这样只要知道两个状态中同一个数字的位置,就可查出它们的相对距离,也就是该数字的偏移距离;例如在一个状态中,数字8的位置是3,在另一状态中位置是7,那么从矩阵的3行7列可找到2,它就是8在两个状态中的偏移距离。
8数码问题是一种经典的人工智能问题,也是A*算法的经典应用之一。该问题要求在一个3x3的方格中,摆放1~8的数字,其中一个格子为空格,可以通过将相邻数字移动到空格来达到目标状态。目标状态为: 1 2 3 4 5 6 7 8 例如,初始状态为: 2 8 3 1 6 4 7 0 5 其中0表示空格,可以移动到相邻的位置。通过移动数字,可以将初始状态转化为目标状态。在解决8数码问题时,可以使用A*算法来搜索最优解。具体步骤如下: 1. 定义状态表示:将每个状态表示为一个3x3的矩阵,其中数字1~8表示对应位置的数字,0表示空格。例如,初始状态可以表示为: [[2, 8, 3], [1, 6, 4], [7, 0, 5]] 2. 定义状态转移:对于每个状态,定义可以通过移动空格得到的下一步状态。例如,对于初始状态,可以通过将空格向上移动得到: [[2, 8, 3], [1, 0, 4], [7, 6, 5]] 3. 定义启发函数(Heuristic Function):启发函数用来评估当前状态到目标状态的距离,通常使用曼哈顿距离(Manhattan Distance)来计算。曼哈顿距离是指从当前数字位置到目标数字位置的横向和纵向距离之和。例如,对于数字1的位置(0,0),目标位置为(0,0),曼哈顿距离为0;对于数字2的位置(0,1),目标位置为(0,1),曼哈顿距离为0;对于数字3的位置(0,2),目标位置为(0,2),曼哈顿距离为0;对于数字4的位置(1,0),目标位置为(1,0),曼哈顿距离为0;对于数字5的位置(1,1),目标位置为(1,1),曼哈顿距离为0;对于数字6的位置(1,2),目标位置为(1,2),曼哈顿距离为0;对于数字7的位置(2,0),目标位置为(2,0),曼哈顿距离为0;对于数字8的位置(2,1),目标位置为(2,1),曼哈顿距离为0;对于空格的位置(2,2),目标位置为(2,2),曼哈顿距离为0。因此,初始状态的启发函数值为0。 4. 定义估价函数(Evaluation Function):估价函数用来评估当前状态的优先级,通常使用f(n)=g(n)+h(n)来计算,其中g(n)表示从初始状态到当前状态的代价,h(n)表示当前状态到目标状态的距离估计。在8数码问题中,g(n)可以表示为移动数字的步数,由于每个数字最多只能移动一次,因此g(n)的最大值为8。h(n)可以表示为曼哈顿距离,由于曼哈顿距离不会超过8x3=24,因此h(n)的最大值为24。因此,估价函数的最大值为32。 5. 定义搜索算法:使用A*算法进行搜索,从初始状态出发,每次选择f(n)最小的状态进行扩展,直到找到目标状态为止。 通过以上步骤,可以解决8数码问题,并找到最优解。在实际应用中,可以使用优先队列来实现A*算法,以提高搜索效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醉蕤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值