系列文章目录
文章目录
前言
提示:这里可以添加本文要记录的大概内容:
yolov8搭建(Windows,当前使用版本:8.2.48)
提示:以下是本篇文章正文内容,下面案例可供参考
一、项目地址
1.传送门
项目地址:
https://github.com/ultralytics/ultralytics
权重文件地址:
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt
选择上述权重文件任意一个,放到项目根目录中(此处我使用yolov8n.pt)
二、CUDA配置
1.检查当前电脑允许的最大CUDA版本
代码如下(示例):执行命令:nvidia-smi 查看当前显卡支持的最大的cuda版本
2.下载并安装CUDA
下载地址:https://developer.nvidia.com/cuda-toolkit-archive(此处我选的是CUDA Toolkit 12.1.0,截至文章发表时间,此版本为最佳版本,需要与下面的pytorch版本匹配才可)
安装完毕后检查系统环境变量配置:
Path–>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin
Path–>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\libnvvp
有可能安装的时候会自动添加,需检查。
3.CUDA环境验证
nvcc -V,回显如下:
二、CUDNN配置
1.下载地址
https://developer.nvidia.com/rdp/cudnn-archive
作者使用的版本:
2.配置
将下载解压后将所有文件拷贝到CUDA目录里:
CUDA默认路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1
四、安装anaconda
1.下载地址
https://www.anaconda.com/download/success
2.配置
配置环境变量:Path中添加:
D:\ProgramData\anaconda3
D:\ProgramData\anaconda3\Scripts
D:\ProgramData\anaconda3\Library\bin
3.验证
conda --version,回显:
conda info
五、创建yolov8的python环境
conda create -n yolov8 python==3.8
查看当前有那些虚拟环境:conda env list
激活环境:conda activate yolov8
删除环境:conda remove --name yolov8 --all
六、安装pytorch(需要在yolov8环境中进行)
https://pytorch.org/get-started/locally/
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
注意:如果报错且再次执行上述命令无法正常进行时则清理缓存:conda clean --packages --tarballs然后删除yolov8环境之后重新创建。
七、安装依赖
cd到源码目录
切换到yolov8 python环境
进入到项目的根目录,执行:pip install ultralytics
八、测试
1.整体环境测试
切换到yolov8环境,编写test.py
# 输入库
import torch
# 查看版本
print(torch.__version__)
# 查看gpu是否可用
print(torch.cuda.is_available())
# 查看对应CUDA的版本号
print(torch.backends.cudnn.version())
print(torch.version.cuda)
# 退出python
quit()
运行:python test.py 回显:
注意:若第二行为false则使用的是CPU(非显卡)
1.图片识别测试
切换到yolov8环境,执行:
yolo task=detect mode=predict model=yolov8n.pt conf=0.25 source=‘E:\git\ultralytics\ultralytics\assets\bus.jpg’
回显:
Ultralytics YOLOv8.2.48 🚀 Python-3.8.19 torch-2.3.1 CUDA:0 (NVIDIA GeForce RTX 3060 Ti, 8192MiB)
YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs
image 1/1 E:\git\ultralytics\ultralytics\assets\bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 160.8ms
Speed: 38.5ms preprocess, 160.8ms inference, 1476.2ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs\detect\predict
💡 Learn more at https://docs.ultralytics.com/modes/predict