yolov8搭建(Windows版)

系列文章目录



前言

提示:这里可以添加本文要记录的大概内容:

yolov8搭建(Windows,当前使用版本:8.2.48)


提示:以下是本篇文章正文内容,下面案例可供参考

一、项目地址

1.传送门

项目地址:
https://github.com/ultralytics/ultralytics
权重文件地址:
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt
选择上述权重文件任意一个,放到项目根目录中(此处我使用yolov8n.pt)

二、CUDA配置

1.检查当前电脑允许的最大CUDA版本

代码如下(示例):执行命令:nvidia-smi 查看当前显卡支持的最大的cuda版本
在这里插入图片描述

2.下载并安装CUDA

下载地址:https://developer.nvidia.com/cuda-toolkit-archive(此处我选的是CUDA Toolkit 12.1.0,截至文章发表时间,此版本为最佳版本,需要与下面的pytorch版本匹配才可)
安装完毕后检查系统环境变量配置:
Path–>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin
Path–>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\libnvvp
有可能安装的时候会自动添加,需检查

3.CUDA环境验证

nvcc -V,回显如下:
在这里插入图片描述

二、CUDNN配置

1.下载地址

https://developer.nvidia.com/rdp/cudnn-archive
作者使用的版本:
在这里插入图片描述

2.配置

将下载解压后将所有文件拷贝到CUDA目录里:
CUDA默认路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1

四、安装anaconda

1.下载地址

https://www.anaconda.com/download/success

2.配置

配置环境变量:Path中添加:
D:\ProgramData\anaconda3
D:\ProgramData\anaconda3\Scripts
D:\ProgramData\anaconda3\Library\bin

3.验证

conda --version,回显:
在这里插入图片描述

conda info

五、创建yolov8的python环境

conda create -n yolov8 python==3.8
查看当前有那些虚拟环境:conda env list
激活环境:conda activate yolov8
删除环境:conda remove --name yolov8 --all

六、安装pytorch(需要在yolov8环境中进行)

https://pytorch.org/get-started/locally/
在这里插入图片描述
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
注意:如果报错且再次执行上述命令无法正常进行时则清理缓存:conda clean --packages --tarballs然后删除yolov8环境之后重新创建。

七、安装依赖

cd到源码目录
切换到yolov8 python环境
进入到项目的根目录,执行:pip install ultralytics

八、测试

1.整体环境测试

切换到yolov8环境,编写test.py

# 输入库
import torch
# 查看版本
print(torch.__version__)
# 查看gpu是否可用
print(torch.cuda.is_available())
# 查看对应CUDA的版本号
print(torch.backends.cudnn.version())
print(torch.version.cuda)
# 退出python
quit()

运行:python test.py 回显:
在这里插入图片描述
注意:若第二行为false则使用的是CPU(非显卡)

1.图片识别测试

切换到yolov8环境,执行:
yolo task=detect mode=predict model=yolov8n.pt conf=0.25 source=‘E:\git\ultralytics\ultralytics\assets\bus.jpg’
回显:
Ultralytics YOLOv8.2.48 🚀 Python-3.8.19 torch-2.3.1 CUDA:0 (NVIDIA GeForce RTX 3060 Ti, 8192MiB)
YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs

image 1/1 E:\git\ultralytics\ultralytics\assets\bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 160.8ms
Speed: 38.5ms preprocess, 160.8ms inference, 1476.2ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs\detect\predict
💡 Learn more at https://docs.ultralytics.com/modes/predict

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值