电商数据分析---RFM用户画像

电商数据分析:揭示销售趋势与用户行为

电商数据分析

一.数据描述

数据下载

订单顺序编号 订单号 用户名 商品编号 订单金额 付款金额

二.分析角度

1.整体角度----探索每个月有效的订单,以及销售额

2.个人角度----统计第一次购买的数量,以及最新时间购买的人数

3.用户画像----使用RFM模型对用户进行分类

三.数据清洗

pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
plt.rcParams['font.family'] = 'Microsoft YaHei'
plt.rcParams['axes.unicode_minus'] = False

首先设置如上,前两行是让字段整体输出,后两行是使画图显示中文

1.处理缺失值

# 01 空值处理
print(data.isnull().sum())
data['渠道编号'].fillna(data['渠道编号'].mode(), inplace=True)
print("----------------------")

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4JM0PXUS-1686745656368)(C:\Users\86170\AppData\Roaming\Typora\typora-user-images\image-20230614175754731.png)]

空值字段只有渠道的编号,数量较少,可以采用删除,本次采用使用众数填充的方法处理空值。

2.重复值

# 02 重复值处理
print("数据的重复值个数为", data.duplicated().sum())

无重复值。

3.异常值

本次数据主要是2021年的数据,对于其他时间段的数据进行删除,并且检查付款金额字段数据

print("数据异常值数据\n", data[data['付款金额'] < 0]['付款金额'])
data.drop(data[data['付款金额'] < 0]['付款金额'].index, inplace=True)
# 增加下日期列与月份
data['订单日期'] = pd.to_datetime(data['付款时间'], format='%Y-%m-%d').dt.date
data['月份'] = pd.to_datetime(data['订单日期']
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值