最优化理论复习--使用导数的最优化方法

本文介绍了最速下降法和牛顿法在无约束优化中的应用,包括它们的基本原理、迭代公式、收敛性以及可能遇到的问题,如条件数影响收敛速度和修正牛顿法处理非正定矩阵的方法。
摘要由CSDN通过智能技术生成

上一篇

最优化理论复习–最优性条件(二)

最速下降法

考虑无约束问题 m i n f ( x ) , x ∈ R n min f(x), x\in R^n minf(x),xRn, 其中 f ( x ) f(x) f(x) 具有一阶连续偏导数(梯度下降法)
策略:从某一点出发,选择一个目标函数值下降最快的方向,沿此方向搜索以期尽快达到极小点。

下降方向:负梯度方向是最速下降方向
d = − ▽ f ( x ) ∣ ∣ ▽ f ( x ) ∣ ∣ d = -\frac{\bigtriangledown f(x)}{||\bigtriangledown f(x)||} d=f(x)f(x)
注: 在不同的尺度下最速下降方向是不同的

最速下降法的迭代公式:
x k + 1 = x k + λ k d k x_{k + 1} = x_{k} + \lambda_k d_{k} xk+1=xk+λkdk

  • d k d_{k} dk 为搜索方向为 − ▽ f ( x k ) - \bigtriangledown f(x_{k}) f(xk)
  • λ k \lambda_k λk为一维搜索步长,满足 f ( x k + λ k d k ) = min ⁡ λ ≥ 0 f ( x k + λ d k ) f(x_k + \lambda_k d_k) = \min\limits_{\lambda \geq 0} f(x_k + \lambda d_k) f(xk+λkdk)=λ0minf(xk+λdk)

算法步骤:

  1. 给定初始点 x k ∈ E n x_k \in E^n xkEn, 允许误差 ϵ > 0 , k = 1 \epsilon > 0, k = 1 ϵ>0,k=1
  2. 计算搜索方向 d = − ▽ f ( x k ) d = - \bigtriangledown f(x_k) d=f(xk)
  3. ∣ ∣ d k ∣ ∣ ≤ ϵ ||d_k|| \leq \epsilon dkϵ, 停止, 从 x k x_k xk 出发,沿 d k d_k dk 进行一维搜索, 求 λ k \lambda_k λk, 使得 f ( x k + λ k d k ) = min ⁡ λ k ≥ 0 f ( x k + λ d k ) f(x_k + \lambda_k d_k) = \min\limits_{\lambda_k \geq 0} f(x_k + \lambda d_k) f(xk+λkdk)=λk0minf(xk+λdk)
  4. x k + 1 = x k + λ k d k , k = k + 1 x_{k +1} = x_k + \lambda_k d_k, k = k + 1 xk+1=xk+λkdk,k=k+1, 转2

在这里插入图片描述
最速下降法的收敛性是线性收敛的。
条件数越小,收敛越快;条件数越大,收敛越慢
最速下降法存在锯齿现象,因为相邻的两个搜索方向是正交的
在这里插入图片描述

牛顿法

f ( x ) f(x) f(x) 是二次可微函数, x ∈ R n x \in R^n xRn, 又设 x k x_k xk f ( x ) f(x) f(x) 的极小点的一个估计, 将 f ( x ) f(x) f(x) x k x_k xk 点泰勒展开,二阶近似
f ( x ) = f ( x k ) + ▽ f ( x k ) T ( x − x k ) + 1 2 ( x − x k ) T ▽ 2 f ( x k ) ( x − x k ) f(x) = f(x_k) + \bigtriangledown f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \bigtriangledown^2 f(x_k) (x - x_k) f(x)=f(xk)+f(xk)T(xxk)+21(xxk)T2f(xk)(xxk)
其中 ▽ 2 f ( x k ) 是 f ( x ) \bigtriangledown ^2 f(x_k) 是f(x) 2f(xk)f(x)在点 x k x_k xk 处的海森矩阵

因此牛顿法的迭代公式为
x k + 1 = x k − ▽ 2 f ( x k ) − 1 ▽ f ( x k ) x_{k + 1} = x_k - \bigtriangledown^2 f(x_k)^{-1} \bigtriangledown f(x_k) xk+1=xk2f(xk)1f(xk)

算法步骤:

  1. 给定初始点 x 0 x_0 x0, 允许误差 ϵ > 0 , k = 1 \epsilon > 0, k = 1 ϵ>0,k=1
  2. ∣ ∣ ▽ f ( x k ) ∣ ∣ ≤ ϵ ||\bigtriangledown f(x_k)|| \leq \epsilon f(xk)ϵ, 停止, 得解 x k x_k xk ,否则, 令 x k + 1 = x k − ▽ 2 f ( x k ) − 1 ▽ f ( x k ) , k = k + 1 x_{k + 1} = x_k - \bigtriangledown^2 f(x_k)^{-1} \bigtriangledown f(x_k), k = k + 1 xk+1=xk2f(xk)1f(xk),k=k+1, 转2

在这里插入图片描述

牛顿法的收敛性是至少二阶收敛的

但是当初始点远离极小点时,牛顿法可能不收敛
因此在牛顿法的基础上增加了步长的概念

阻尼牛顿法
基本思想:增加沿牛顿方向一维搜索

迭代公式
x k + 1 = x k + λ k d k x_{k + 1} = x_k + \lambda_k d_k xk+1=xk+λkdk

  • d k = − ▽ 2 f ( x k ) − 1 ▽ f ( x k ) d_k = - \bigtriangledown^2 f(x_k)^{-1} \bigtriangledown f(x_k) dk=2f(xk)1f(xk)
  • λ k = min ⁡ λ f ( x k + λ d k ) \lambda_k = \min\limits_\lambda f(x_k + \lambda d_k) λk=λminf(xk+λdk)

算法步骤:

  1. 给定初始点 x 0 ϵ > 0 , k = 1 x_0 \epsilon > 0, k = 1 x0ϵ>0,k=1
  2. 计算 ▽ f ( x k ) , ▽ 2 f ( x k ) − 1 \bigtriangledown f(x_k), \bigtriangledown^2 f(x_k) ^{-1} f(xk),2f(xk)1
  3. ∣ ∣ ▽ f ( x k ) ∣ ∣ ≤ ϵ ||\bigtriangledown f(x_k)|| \leq \epsilon f(xk)ϵ,停止,否则令 d k = − ▽ 2 f ( x k ) − 1 ▽ f ( x k ) d_k = - \bigtriangledown^2 f(x_k) ^{-1} \bigtriangledown f(x_k) dk=2f(xk)1f(xk)
  4. x k x_k xk出发,沿方向 d k d_k dk 作一维搜索求 λ k \lambda_k λk,令 x k + 1 = x k + λ k d k x_{k + 1} = x_k + \lambda_k d_k xk+1=xk+λkdk
  5. k = k + 1,转2

二阶矩阵逆矩阵公式:

A = [ a b c d   ] A = [ \begin{matrix} a & b \\ c & d \ \end{matrix} ] A=[acbd ], 则 ∣ A ∣ = a d − b c |A| = ad - bc A=adbc
a d − b c ≠ 0 ad - bc \not = 0 adbc=0时, A的逆矩阵为
A − 1 = 1 ∣ A ∣ [ d − b − c a   ] A^{-1} = \frac{1}{|A|}[ \begin{matrix} d & -b \\ -c & a \ \end{matrix} ] A1=A1[dcba ]
行列式的倒数乘主对角线互换,副对角线添负号


在这里插入图片描述
为了解决 H e s s i a n Hessian Hessian矩阵不存在的情况,提出修正的牛顿法

方法是在 H e s s i a n Hessian Hessian矩阵的基础上加一个参数的单位矩阵是它化为正定矩阵
构造 G k G_k Gk, I I I 为单位矩阵, ϵ k \epsilon_k ϵk 是一个适当的正数
G k = ▽ 2 f ( x k ) + ϵ k I G_k = \bigtriangledown^2 f(x_k) + \epsilon_k I Gk=2f(xk)+ϵkI

算法步骤:

  1. 给定初始点 x 0 ϵ > 0 , k = 0 x_0 \epsilon > 0, k = 0 x0ϵ>0,k=0
  2. 计算梯度 ▽ f ( x k ) \bigtriangledown f(x_k) f(xk), 若 ∣ ∣ ▽ f ( x k ) ∣ ∣ ≤ ϵ ||\bigtriangledown f(x_k)|| \leq \epsilon f(xk)ϵ, 停止, 得到解 x k x_k xk , 否则跳到3
  3. 计算 H e s s i a n 矩 阵 ▽ 2 f ( x k ) Hessian矩阵 \bigtriangledown^2 f(x_k) Hessian2f(xk), 求修正后的矩阵 G k = ▽ 2 f ( x k ) + θ I G_k = \bigtriangledown^2 f(x_k) + \theta I Gk=2f(xk)+θI 计算修正牛顿方向 d k = − ( G k ) − 1 ▽ f ( x k ) d_k = -(G_k)^{-1} \bigtriangledown f(x_k) dk=(Gk)1f(xk)
  4. x k x_k xk 出发, 沿方向 d k d_k dk 作一维搜索,求步长 λ k \lambda_k λk
    x k + 1 = x k + λ k d k x_{k + 1} = x_k + \lambda_k d_k xk+1=xk+λkdk, k = k + 1, 转2

下一篇

未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ˇasushiro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值