一、摘花生
Hello Kitty想摘点花生送给她喜欢的米老鼠。
她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。
地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有的花生。
Hello Kitty只能向东或向南走,不能向西或向北走。
问Hello Kitty最多能够摘到多少颗花生。
输入格式
第一行是一个整数T,代表一共有多少组数据。
接下来是T组数据。
每组数据的第一行是两个整数,分别代表花生苗的行数R和列数 C。
每组数据的接下来R行数据,从北向南依次描述每行花生苗的情况。每行数据有C个整数,按从西向东的顺序描述了该行每株花生苗上的花生数目M。
输出格式
对每组输入数据,输出一行,内容为Hello Kitty能摘到得最多的花生颗数。
数据范围
1≤T≤1001≤T≤100,
1≤R,C≤1001≤R,C≤100,
0≤M≤10000≤M≤1000
输入样例:
2
2 2
1 1
3 4
2 3
2 3 4
1 6 5
输出样例:
8
16
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int a[N][N];
int f[N][N];
int main()
{
int t;
cin>>t;
while(t--)
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
f[i][j]=max(f[i-1][j],f[i][j-1])+a[i][j];
}
cout<<f[n][m]<<endl;
}
return 0;
}
二、最低通行费
【题目描述】
一个商人穿过一个N×N的正方形的网格,去参加一个非常重要的商务活动。他要从网格的左上角进,右下角出。每穿越中间1个小方格,都要花费1个单位时间。商人必须在(2N-1)个单位时间穿越出去。而在经过中间的每个小方格时,都需要缴纳一定的费用。
这个商人期望在规定时间内用最少费用穿越出去。请问至少需要多少费用?
注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。
【输入】
第一行是一个整数,表示正方形的宽度N (1≤N<100);
后面N行,每行N个不大于100的整数,为网格上每个小方格的费用。
【输出】
至少需要的费用。
【输入样例】
5
1 4 6 8 10
2 5 7 15 17
6 8 9 18 20
10 11 12 19 21
20 23 25 29 33
【输出样例】
109
【提示】
样例中,最小值为109=1+2+5+7+9+12+19+21+33。
#include<bits/stdc++.h>
using namespace std;
const int N=110,INF=0x3f3f3f3f;
int a[N][N];
int f[N][N];
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i==1&&j==1)
f[i][j]=a[i][j];//特判左上角
else
{
f[i][j]=INF;
if(i>1)f[i][j]=min(f[i][j],f[i-1][j]+a[i][j]);// 只有不在第一行的时候,才可以从上面过来
if(j>1)f[i][j]=min(f[i][j],f[i][j-1]+a[i][j]);// 只有不在第一列的时候,才可以从左面过来
}
cout<<f[n][n];
return 0;
}
三、方格取数
【题目描述】
设有N×N的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。如下图所示:
某人从图中的左上角A出发,可以向下行走,也可以向右行走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。
【输入】
第一行为一个整数N(N≤10),表示N×N的方格图。
接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。一行“0 0 0”表示结束。
【输出】
第一个整数,表示两条路径上取得的最大的和。
【输入样例】
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
【输出样例】
67
#include<bits/stdc++.h>
using namespace std;
const int N=11,INF=0x3f3f3f3f;
int f[2*N][N][N],w[N][N];
int main()
{
int n;
cin>>n;
int a,b,c;
while(cin>>a>>b>>c,a||b||c) w[a][b]=c;
for(int k=2;k<=n+n;k++)
for(int i1=1;i1<=n;i1++)
for(int i2=1;i2<=n;i2++)
{
int j1=k-i1,j2=k-i2;//弄出j1和j2
if(j1>=1&&j1<=n&&j2>=1&&j2<=n)//假如j合法
{
int t=w[i1][j1];
if(i1!=i2) t+=w[i2][j2];//并且不是同个点
int &x=f[k][i1][i2];
x=max(x,f[k-1][i1-1][i2-1]+t);//i1和i2向下
x=max(x,f[k-1][i1-1][i2]+t);//i1向下和i2向右
x=max(x,f[k-1][i1][i2-1]+t);//i1向右和i2向下
x=max(x,f[k-1][i1][i2]+t);//i1向右和i2向右
}
}
cout<<f[n+n][n][n];
return 0;
}