一,基本定律
名称 | 公式1 | 公式2 |
0-1定律 | A+1=1 | A*0=0 |
自等律 | A+0=A | A*1=A |
重叠律 | A+A=A | A*A=A |
互补律 | A+=1 | A*=0 |
交换律 | A+B=B+A | A*B=B*A |
结合律 | (A+B)+C=A+(B+C) | (A*B)*C=A*(B*C) |
分配律 | A+BC=(A+B)(A+C) | A*(B+C)=AB+BC |
反演律 |
二,三个重要规则
1,代入规则
定义;任何一个逻辑代数式,如果将等式两边所出现的某一变量都代之以同一逻辑函数,则等死仍然成立。
例,已知反演律,以F=B+C代替公式中B,则可得到适用多变量的反演律
2.反演规则
对于任意一个逻辑函数表达式,如果将其表达式中的运算符“*”换成“+”,“+”换成“*”,常量0换成1,1换成0,原变量变反变量,反变量变原变量。
注意:
1,不破坏原式的运算顺序
2,不属于单变量的非号应该保持不变
3.对偶规则
对于任意一个逻辑函数表达式,如果将其表达式中的运算符“*”换成“+”,“+”换成“*”,常量0换成1,1换成0,,变量保持不变
任何逻辑函数都·存在对偶式,若原式成立,其对偶式也一定是等式。
三。常用公式
名称 | 公式1 | 公示2 |
合并律 | AB+A=A | (A+B)(A+)=A |
吸收律1 | A+AB=A | A*(A+B)=A |
吸收律2 | A+B=A+B | A*(+B)=A*B |
吸收律3 | AB+C+BC=AB+C | (A+B)(+C)(B+C)=(A+B)(+C) |