逻辑代数的基本定律和运算规则

一,基本定律

名称公式1公式2
0-1定律A+1=1A*0=0
自等律A+0=AA*1=A
重叠律A+A=AA*A=A
互补律A+\bar{A}=1A*\bar{A}=0
交换律A+B=B+AA*B=B*A
结合律(A+B)+C=A+(B+C)(A*B)*C=A*(B*C)
分配律A+BC=(A+B)(A+C)A*(B+C)=AB+BC
反演律\overline{A+B}=\tilde{A}*\bar{B}\overline{A*B}=\bar{A}+\bar{B}

 

二,三个重要规则

1,代入规则

定义;任何一个逻辑代数式,如果将等式两边所出现的某一变量都代之以同一逻辑函数,则等死仍然成立。

例,已知反演律\overline{A+B}=\tilde{A}*\bar{B},以F=B+C代替公式中B,则可得到适用多变量的反演律

\overline{A+B+C}=\overline{A+F}=\bar{A}*\bar{F}=\bar{A}*\overline{B+C}=\bar{A}*\bar{B}*\bar{C}

2.反演规则

对于任意一个逻辑函数表达式,如果将其表达式中的运算符“*”换成“+”,“+”换成“*”,常量0换成1,1换成0,原变量变反变量,反变量变原变量。

注意:

1,不破坏原式的运算顺序

2,不属于单变量的非号应该保持不变

3.对偶规则

 对于任意一个逻辑函数表达式,如果将其表达式中的运算符“*”换成“+”,“+”换成“*”,常量0换成1,1换成0,,变量保持不变

任何逻辑函数都·存在对偶式,若原式成立,其对偶式也一定是等式。

三。常用公式

名称公式1公示2
合并律AB+A\bar{B}=A(A+B)(A+\bar{B})=A
吸收律1A+AB=AA*(A+B)=A
吸收律2A+\bar{A}B=A+BA*(\bar{A}+B)=A*B
吸收律3AB+\bar{A}C+BC=AB+\bar{A}C(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芊澄cy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值