三大基本定理
1.代入定理:
简单来说,就是你为了验证一个逻辑代数式子,把其中的变量换成另外一个逻辑式子,
查看原式是否成立
(简直在侮辱智商有没有~)
eg 证明二变量的摩根定理:(A+B)'= A'.B' and (A.B)'=A'+ B'可以推广到多变量
解: 第一个式子用B+C代替B==》(A+B+C) = 'A'.(B+C)' =A' +B' +C'
第二个式子,用B.C代替B,同上易证
2.反演定理
对于一个逻辑式,将其中 1。+ =》.
2。. =》+
3。1 =》0
4。0 =》1
变量 =》 变量’(取反)
它仍然成立
注意:1.先括号,再乘号,再加号
2.不是单个变量的取反不变!!!比如(AB)'
感觉理解起来不是很难,举个例子更清楚
Y = A(B+C)+CD ====⇒ Y' = (A'+ (B'.C')) .(C'+D')
Y = ((AB'+C)'+D)'+C' ===⇒ Y' = (((A'+B).C')'.D')'.C
体会:1.对一个式子取反不需要变化,但是括号里面每个变量都需要改变
2.不改变的优先级针对的是改变之前的优先级,变换的时候注意针对原式子里面的乘号加括号就行
3.对偶原理
和反演定理一样,唯一的差别在于,对偶原理不要对变量取反,这样得到的就是对偶式
对偶定理可以通过对等号两边取对偶式来判断一个式子是否成立
eg
Y = A+BC ==> YD = A(B+C) =AB+AC
Y = (A+B)(A+C) ==>AB.AC
推出上面两个式子相等