11.2 二叉树

目录

创建和遍历

概念 

代码实现 

删除

删除的三种情况

删除叶子节点 (比如:2, 5, 9, 12) - > 左右节点都为空

删除只有一颗子树的节点 比如 1 -> 只有左或右节点

删除有两颗子树的节点. (比如:7, 3,10 ) ->左右节点都存在

代码实现

平衡二叉树

左旋树

​编辑代码实现

右旋树

代码实现 

双旋树

​代码实现


创建和遍历

概念 

代码实现 

package com.atguigu.binarysorttree;

public class BinarySortTreeDemo {

    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加结点到二叉排序树
        for(int i = 0; i< arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        
        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树~");
        binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
        
    }

}

//创建二叉排序树
class BinarySortTree {
    private Node root;
    
    public Node getRoot() {
        return root;
    }

    //添加结点的方法
    public void add(Node node) {
        if(root == null) {
            root = node;//如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder() {
        if(root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        
        this.value = value;
    }
    
    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }


    //添加结点的方法
    //递归的形式添加结点,注意需要满足二叉排序树的要求
    public void add(Node node) {
        if(node == null) {
            return;
        }
        
        //判断传入的结点的值,和当前子树的根结点的值关系
        if(node.value < this.value) {
            //如果当前结点左子结点为null
            if(this.left == null) {
                this.left = node;
            } else {
                //递归的向左子树添加
                this.left.add(node);
            }
        } else { //添加的结点的值大于 当前结点的值
            if(this.right == null) {
                this.right = node;
            } else {
                //递归的向右子树添加
                this.right.add(node);
            }
            
        }
    }
    
    //中序遍历
    public void infixOrder() {
        if(this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if(this.right != null) {
            this.right.infixOrder();
        }
    }
    
}

删除

删除的三种情况

第一种情况:

        删除叶子节点 (比如:2, 5, 9, 12) - > 左右节点都为空

思路

        (1) 需求先去找到要删除的结点  targetNode

        (2)  找到 targetNode 的父结点 parent

        (3)  确定 targetNode 是 parent 的左子结点 还是右子结点

        (4)  根据前面的情况来对应删除

                左子结点 parent.left = null

                右子结点 parent.right = null;

第二种情况:

        删除只有一颗子树的节点 比如 1 -> 只有左或右节点

思路

        (1) 需求先去找到要删除的结点  targetNode

        (2)  找到targetNode 的 父结点 parent

        (3) 确定targetNode 的子结点是左子结点还是右子结点

        (4) targetNode 是 parent 的左子结点还是右子结点

        (5) 如果targetNode 有左子结点

                5. 1 如果 targetNode 是 parent 的左子结点

                        parent.left = targetNode.left;

                5.2  如果 targetNode 是 parent 的右子结点

                        parent.right = targetNode.left;

        (6) 如果targetNode 有右子结点

                6.1 如果 targetNode 是 parent 的左子结点

                        parent.left = targetNode.right;

                6.2 如果 targetNode 是 parent 的右子结点

                        parent.right = targetNode.right

情况三 :

        删除有两颗子树的节点. (比如:7, 3,10 ) ->左右节点都存在

思路

        (1) 需求先去找到要删除的结点  targetNode

        (2)  找到targetNode 的 父结点 parent

        (3)  从targetNode 的右子树找到最小的结点

        (4) 用一个临时变量,将 最小结点的值保存 temp = 11

        (5)  删除该最小结点

        (6)  targetNode.value = temp

代码实现

public class BinarySortTreeDemo {

    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加结点到二叉排序树
        for(int i = 0; i< arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        
        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树~");
        binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
        
        //测试一下删除叶子结点
        
       
        binarySortTree.delNode(12);
       
     
        binarySortTree.delNode(5);
        binarySortTree.delNode(10);
        binarySortTree.delNode(2);
        binarySortTree.delNode(3);
           
        binarySortTree.delNode(9);
        binarySortTree.delNode(1);
        binarySortTree.delNode(7);
        
        
        System.out.println("root=" + binarySortTree.getRoot());
        
        
        System.out.println("删除结点后");
        binarySortTree.infixOrder();
    }

}

//创建二叉排序树
class BinarySortTree {
    private Node root;
    
    
    
    
    public Node getRoot() {
        return root;
    }

    //查找要删除的结点
    public Node search(int value) {
        if(root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }
    
    //查找父结点
    public Node searchParent(int value) {
        if(root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }
    
    //编写方法: 
    //1. 返回的 以node 为根结点的二叉排序树的最小结点的值
    //2. 删除node 为根结点的二叉排序树的最小结点
    /**
     * 
     * @param node 传入的结点(当做二叉排序树的根结点)
     * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环的查找左子节点,就会找到最小值
        while(target.left != null) {
            target = target.left;
        }
        //这时 target就指向了最小结点
        //删除最小结点
        delNode(target.value);
        return target.value;
    }
    
    
    //删除结点
    public void delNode(int value) {
        if(root == null) {
            return;
        }else {
            //1.需求先去找到要删除的结点  targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的结点
            if(targetNode == null) {
                return;
            }
            //如果我们发现当前这颗二叉排序树只有一个结点
            if(root.left == null && root.right == null) {
                root = null;
                return;
            }
            
            //去找到targetNode的父结点
            Node parent = searchParent(value);
            //如果要删除的结点是叶子结点
            if(targetNode.left == null && targetNode.right == null) {
                //判断targetNode 是父结点的左子结点,还是右子结点
                if(parent.left != null && parent.left.value == value) { //是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {//是由子结点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
                
                
            } else { // 删除只有一颗子树的结点
                //如果要删除的结点有左子结点 
                if(targetNode.left != null) {
                    if(parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if(parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else { //  targetNode 是 parent 的右子结点
                            parent.right = targetNode.left;
                        } 
                    } else {
                        root = targetNode.left;
                    }
                } else { //如果要删除的结点有右子结点 
                    if(parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if(parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else { //如果 targetNode 是 parent 的右子结点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
                
            }
            
        }
    }
    
    //添加结点的方法
    public void add(Node node) {
        if(root == null) {
            root = node;//如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder() {
        if(root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        
        this.value = value;
    }
    
    
    //查找要删除的结点
    /**
     * 
     * @param value 希望删除的结点的值
     * @return 如果找到返回该结点,否则返回null
     */
    public Node search(int value) {
        if(value == this.value) { //找到就是该结点
            return this;
        } else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
            //如果左子结点为空
            if(this.left  == null) {
                return null;
            }
            return this.left.search(value);
        } else { //如果查找的值不小于当前结点,向右子树递归查找
            if(this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
        
    }
    //查找要删除结点的父结点
    /**
     * 
     * @param value 要找到的结点的值
     * @return 返回的是要删除的结点的父结点,如果没有就返回null
     */
    public Node searchParent(int value) {
        //如果当前结点就是要删除的结点的父结点,就返回
        if((this.left != null && this.left.value == value) || 
                (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
            if(value < this.value && this.left != null) {
                return this.left.searchParent(value); //向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value); //向右子树递归查找
            } else {
                return null; // 没有找到父结点
            }
        }
        
    }
    
    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }


    //添加结点的方法
    //递归的形式添加结点,注意需要满足二叉排序树的要求
    public void add(Node node) {
        if(node == null) {
            return;
        }
        
        //判断传入的结点的值,和当前子树的根结点的值关系
        if(node.value < this.value) {
            //如果当前结点左子结点为null
            if(this.left == null) {
                this.left = node;
            } else {
                //递归的向左子树添加
                this.left.add(node);
            }
        } else { //添加的结点的值大于 当前结点的值
            if(this.right == null) {
                this.right = node;
            } else {
                //递归的向右子树添加
                this.right.add(node);
            }
            
        }
    }
    
    //中序遍历
    public void infixOrder() {
        if(this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if(this.right != null) {
            this.right.infixOrder();
        }
    }
    
}

平衡二叉树

引出平衡二叉树方式

左旋树

代码实现

//左旋转方法
private void leftRotate() {
    
    //创建新的结点,以当前根结点的值
    Node newNode = new Node(value);
    //把新的结点的左子树设置成当前结点的左子树
    newNode.left = left;
    //把新的结点的右子树设置成带你过去结点的右子树的左子树
    newNode.right = right.left;
    //把当前结点的值替换成右子结点的值
    value = right.value;
    //把当前结点的右子树设置成当前结点右子树的右子树
    right = right.right;
    //把当前结点的左子树(左子结点)设置成新的结点
    left = newNode;
    
    
}

右旋树

代码实现 

//右旋转
private void rightRotate() {
    Node newNode = new Node(value);
    newNode.right = right;
    newNode.left = left.right;
    value = left.value;
    left = left.left;
    right = newNode;
}

双旋树

 代码实现

// 添加结点的方法
// 递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
    if (node == null) {
        return;
    }

    // 判断传入的结点的值,和当前子树的根结点的值关系
    if (node.value < this.value) {
        // 如果当前结点左子结点为null
        if (this.left == null) {
            this.left = node;
        } else {
            // 递归的向左子树添加
            this.left.add(node);
        }
    } else { // 添加的结点的值大于 当前结点的值
        if (this.right == null) {
            this.right = node;
        } else {
            // 递归的向右子树添加
            this.right.add(node);
        }

    }
    
    //当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
    if(rightHeight() - leftHeight() > 1) {
        //如果它的右子树的左子树的高度大于它的右子树的右子树的高度
        if(right != null && right.leftHeight() > right.rightHeight()) {
            //先对右子结点进行右旋转
            right.rightRotate();
            //然后在对当前结点进行左旋转
            leftRotate(); //左旋转..
        } else {
            //直接进行左旋转即可
            leftRotate();
        }
        return ; //必须要!!!
    }
    
    //当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
    if(leftHeight() - rightHeight() > 1) {
        //如果它的左子树的右子树高度大于它的左子树的高度
        if(left != null && left.rightHeight() > left.leftHeight()) {
            //先对当前结点的左结点(左子树)->左旋转
            left.leftRotate();
            //再对当前结点进行右旋转
            rightRotate();
        } else {
            //直接进行右旋转即可
            rightRotate();
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值