链接:https://leetcode.cn/problems/minimum-swaps-to-make-sequences-increasing/solution/-by-xun-ge-v-4v1z/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
题目
示例
思路
分析题目得,对于数组中的任意一个元素,我们都只有两个操作:
- 换
- 不换
- dp数组的含义
定义dp数组,dp[i][0] 表示数组 i 不换的最小操作数,dp[i][1] 表示数组 i 换的最小操作数
- 递推公式
题目已经说明保证用例可以实现操作,那么对于任意一个 i 来说必然存在一下任意一个情况:
- nums1[i] > nums1[i-1] && nums2[i] > nums2[i-1]
- nums1[i] > nums2[i-1] && nums2[i] > nums1[i-1]
对于满足第一种情况但不满足第二种情况,因为前后已经递增了,那么递推公式为
- dp[i][0] = dp[i-1][0],因为已经递增了,那么当前位置也就不需要操作,所以为上一次的操作数
- dp[i][1] = dp[i-1][1]+1,注意理解dp含义,dp[i][1]为当前位置换,dp[i-1][1] 为上一个位置换,因为nums1上一个位置的值比nums2当前位置的值大,那么当前位置要换元素还有保证递增,就需要dp[i-1][1]的位置先换,才能保证当前位置换还能满足递增
对于满足第二种情况但不满足第一种情况,因为前后不递增了,那么递推公式为
- dp[i][0] = dp[i-1][1],因为同一个数组中已经不递增了,如果当前位置不换,还要递增,只有上一个元素交换
- dp[i][1] = dp[i-1][0]+1,同理保证上一个元素不换只交换当前位置
当两种情况的满足时
- dp[i][0] = MIN(dp[i-1][1], dp[i-1][0]),对于两种情况都满足时,当前位置不换,继承上一个元素换或者不换的最小操作数即可
- dp[i][1] = MIN(dp[i-1][1], dp[i-1][0]) + 1,同理即可,当前位置换,前一个数都满足要求
- dp数组初始化
对于任意一个dp[i]都由dp[i-1]得到,所以只需要初始化dp[0]即可,对于dp[0],不换操作数肯定为 0 ,即dp[0][0] = 0, 换操作数就为 1,即 dp[0][1] = 1;
- 递推方向
对于任意一个dp[i]都由dp[i-1]得到,所以需要从头往后递推
代码
#define MIN(a, b) ((a) < (b) ? (a) : (b))
int minSwap(int* nums1, int nums1Size, int* nums2, int nums2Size){
int a = 0;
int b = 1;
int n = nums1Size;
for(int i = 1; i < nums1Size; i++)//枚举每一个元素
{
int at = a;//保证上一个状态
int bt = b;
//因为对于一个数组来说最大操作数就为交换全部元素,就n次
a = n;
b = n;
if(nums1[i] > nums1[i-1] && nums2[i] > nums2[i-1])//第一种情况
{
a = MIN(a, at);
b = MIN(b, bt+1);
}
if(nums1[i] > nums2[i-1] && nums2[i] > nums1[i-1])//第二种情况
{
a = MIN(a, bt);
b = MIN(b, at+1);
}
//第三种情况隐藏在MIN中,每一步的取最小值,当两种情况都满足时,肯定是去最小值
}
return MIN(a, b);
}
作者:xun-ge-v
链接:https://leetcode.cn/problems/minimum-swaps-to-make-sequences-increasing/solution/-by-xun-ge-v-4v1z/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。