💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
摘要:为了解决蝶形优化算法(BOA)容易出现精度低、收敛慢的问题,研究的趋势是将两种或多种算法混合,以获得优化问题领域的最优解。提出了一种新的混合算法,即HPSOBOA,并介绍了三种改进基本BOA的方法。因此,引入了使用立方一维映射的BOA初始化,并执行了非线性参数控制策略。此外,将粒子群优化(PSO)算法与BOA相结合,以改进全局优化的基本BOA。进行了两个实验(包括26个众所周知的基准函数)来验证所提出算法的有效性。实验的比较结果表明,与PSO、BOA和其他已知的群优化算法相比,混合HPSOBOA在高维数值优化问题中收敛速度快,稳定性更好。
关键词:蝶形优化算法(BOA);粒子群优化;立方图;非线性;高维度
📚2 运行结果
部分代码:
function func_plot_con(func_name)
[lb,ub,dim,fobj] = Hight_Get_Functions_details(func_name);
switch func_name
case 'F1'
x=-100:2:100; y=x; %[-100,100]
case 'F2'
x=-10:0.2:10; y=x; %[-10,10]
case 'F3'
x=-10:0.2:10; y=x; %[-10,10]
case 'F4'
x=-10:0.5:10; y=x; %[-10,10]
case 'F5'
x=-10:0.5:10; y=x; %[-10,10]
case 'F6'
x=-1.28:0.05:1.28; y=x; %[-1.28,1.28]
case 'F7'
x=-10:0.5:10; y=x; %[-10,10]
case 'F8'
x=-1:0.01:1;y=x; %[-1,1]
case 'F9'
x=-10:0.1:10; y=x; %[-10,10]
case 'F10'
x=-10:0.1:10; y=x; %[-10,10]
case 'F11'
x=-5.12:0.1:5.12; y=x; %[-5,10]
case 'F12'
x=-5:0.05:5; y=x; %[-5,5]
case 'F13'
x=-100:2:100; y=x; %[-100,100]
case 'F14'
x=-100:2:100; y=x; %[-100,100]
case 'F15'
x=-10:0.1:10; y=x; %[-10,10]
case 'F16'
x=-5.12:0.1:5.12; y=x; %[-50,50]
case 'F17'
x=-5.12:0.1:5.12; y=x; %[-50,50]
case 'F18'
x=-20:0.05:20; y=x; %[-20,20]
case 'F19'
x=-600:5:600; y=x; %[-600,600]
case 'F20'
x=-10:0.2:10; y=x; %[-10,10]
case 'F21'
x=-10:0.1:10; y=x; %[-50,50]
case 'F22'
x=-5:0.05:5; y=x; %[-50,50]
case 'F23'
x=-2:0.02:2; y=x; %[-5,5]
case 'F24'
x=-1:0.01:1; y=x; %[-1,1]
case 'F25'
x=-20:0.2:20; y=x; %[-100,100]
case 'F26'
x=-5:0.2:5; y=x; %[-10,10]
end
L=length(x);
f=[];
for i=1:L
for j=1:L
f(i,j)=fobj([x(i),y(j)]);
end
end
surfc(x,y,f,'LineStyle','none');
% contour(x,y,f)
% colormap winter
colormap parula
% colormap autumn
% colormap summer
end
🌈3 Matlab代码及详细文章讲解
🎉4 参考文献
部分理论来源于网络,如有侵权请联系删除。