💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要:
在本文中,我们介绍了一般分析公式,用于确定串联、并联及其互联的任意分数阶电容器(FoCs)的等效阻抗、幅值和相位(即阶数)。所提出的方法有助于在分数域中评估这些相关量,因为每个元素的阶数对每个FoC的阻抗有显著影响,并且不能仅考虑它们的等效电容。我们制造并表征了三种不同阶数的固态分数阶被动电容器,使用的是铁电聚合物和还原氧化石墨烯渗透的P(VDF-TrFE-CFE)复合材料结构。通过阻抗分析仪发现,器件在0.2至20 MHz的频率范围内表现稳定,相位角偏差为±4°。本文还提供了多个数值和实验案例研究,特别是针对两个和三个连接的FoCs。我们推导了串联和并联连接的FoCs测量单位的基本问题。以便于等效FoC幅值和相位的简单计算。实验结果与理论假设结果高度一致。
📚2 运行结果
部分代码:
% Set the order and fractional-order capacitance value
order = [0.69 0.92 0.62];
FoC = [5.52e-9 47.52e-12 24.74e-9];
% Calculating the equivalent impedances
for n = 1:length(order)
Z(n) = 1/((s^order(n))*FoC(n));
pretty(Z(n));
% Equivalent impedance of series connection
Zstot = sum(Z(1:n));
Y(n) = ((s^order(n))*FoC(n));
pretty(Y(n));
Zptot = sum(Y(1:n))
% Equivalent impedance of parallel connection
Zptot = 1/Zptot;
end
% Plotting the results for series-connected FoCs
NUM = eval(Zstot);
z = [z; (solve(NUM))];
zz = z/(2*pi);
f = logspace (2,8,100);
l = size(f);
for n = 1:1:l(2)
% Magnitude of equivalent impendace (dB)
module(n) = (abs(subs(NUM,s,j*2*pi*f(n))));
end
for n = 1:1:l(2)
% Phase of equivalent impedance (degree)
phase(n) = (angle(subs(NUM,s,j*2*pi*f(n))))*180/pi;
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]Kartci, Aslihan, Agamyrat Agambayev, Norbert Herencsar, Khaled N. Salama. "Series-, Parallel-, and Inter-Connection of Solid-State Arbitrary Fractional-Order Capacitors: Theoretical Study and Experimental Verification.
🌈4 Matlab代码、文献下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取