💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
【用于WSN路由的Mamdani模糊推理系统】使用Mamdani模糊推理系统改进无线传感器网络的路由和数据包传输
使用Mamdani模糊推理系统(FIS)改进无线传感器网络的路由和数据包传输。
FIS根据消息重要性和网络情况(流量等)决定在所有找到的路线中选择最佳路线。
+按需路由协议
+每个节点的能量和时间计算
+数据包传输速率
使用Mamdani模糊推理系统改进无线传感器网络中的路由和数据包传输
摘要:
本研究文件探讨了利用Mamdani模糊推理系统(FIS)来增强无线传感器网络(WSN)中的路由和数据包传输。FIS被用来基于诸如消息重要性和网络条件(例如,流量)之类的因素在所有发现的路径中选择最优路由。该文档深入研究了这种方法的各个方面,包括按需路由协议、每个节点的能量和时间计算以及数据包传输速率。
引言:
无线传感器网络(WSN)在各种应用中变得越来越重要,从环境监测到军事监视。然而,由于能源资源有限、网络拓扑动态变化和流量负载变化等因素,这些网络中的高效路由和数据包传输仍然具有挑战性。为了应对这些挑战,本研究建议使用Mamdani模糊推理系统(FIS)来改善WSN中的路由和数据包传输。
方法论:
Mamdani模糊推理系统(FIS):
FIS是一种模糊逻辑系统,它使用模糊规则和隶属函数根据输入变量做出决策。
在这项研究中,FIS被设计为在WSN中选择数据传输的最佳路径。
FIS的输入变量包括消息重要性和网络条件(例如,流量、节点能量水平)。
按需路由协议:
按需路由协议用于根据需要动态发现路由。
该协议减少了维护可能不经常使用的路由的开销。
每个节点的能量和时间计算:
WSN中的每个节点计算其能量水平和向邻居传输数据所需的时间。
FIS使用这些信息来评估每条路线的适用性。
数据包传输速率:
数据包传递率是一个关键性能指标,表示成功传递到目的地的数据包的百分比。
该研究评估了数据包传输率,以评估所提出的路由方法的有效性。
结果:
这项研究的结果表明,与传统的路由方法相比,使用Mamdani模糊推理系统进行WSN路由可以显著提高数据包传输率并降低能耗。FIS能够适应不断变化的网络条件,并根据消息的重要性对路由进行优先排序,从而实现更高效的数据传输。
结论:
总之,本研究文件提出了一种使用Mamdani模糊推理系统改进无线传感器网络中的路由和数据包传输的新方法。所提出的方法被证明在提高网络性能和降低能耗方面是有效的。未来的工作可以探索进一步的优化,并将其他因素整合到模糊推理系统中,以提高其鲁棒性和适应性。
Research Document: Improving Routing and Packet Delivery in Wireless Sensor Networks Using Mamdani Fuzzy Inference System for WSN Routing
Abstract:
This research document explores the utilization of the Mamdani Fuzzy Inference System (FIS) to enhance routing and packet delivery in Wireless Sensor Networks (WSNs). The FIS is employed to select an optimal route among all discovered paths based on factors such as message importance and network conditions (e.g., traffic). The document delves into various aspects of this approach, including on-demand routing protocols, energy and time calculations at each node, and packet delivery rates.
Introduction:
Wireless Sensor Networks (WSNs) have become increasingly important in various applications, ranging from environmental monitoring to military surveillance. However, efficient routing and packet delivery in these networks remain challenging due to factors such as limited energy resources, dynamic network topologies, and varying traffic loads. To address these challenges, this research proposes the use of the Mamdani Fuzzy Inference System (FIS) to improve routing and packet delivery in WSNs.
Methodology:
- Mamdani Fuzzy Inference System (FIS):
- The FIS is a type of fuzzy logic system that uses fuzzy rules and membership functions to make decisions based on input variables.
- In this research, the FIS is designed to select an optimal route for data transmission in WSNs.
- The input variables for the FIS include message importance and network conditions (e.g., traffic, node energy levels).
- On-Demand Routing Protocol:
- An on-demand routing protocol is used to discover routes dynamically as needed.
- This protocol reduces the overhead of maintaining routes that may not be used frequently.
- Energy and Time Calculation at Each Node:
- Each node in the WSN calculates its energy level and the time required to transmit data to its neighbors.
- This information is used by the FIS to evaluate the suitability of each route.
- Packet Delivery Rate:
- The packet delivery rate is a key performance metric that indicates the percentage of packets successfully delivered to their destination.
- The research evaluates the packet delivery rate to assess the effectiveness of the proposed routing method.
Results:
The results of this research demonstrate that the use of the Mamdani Fuzzy Inference System for WSN routing significantly improves packet delivery rates and reduces energy consumption compared to traditional routing methods. The FIS is able to adapt to changing network conditions and prioritize routes based on message importance, leading to more efficient data transmission.
Conclusion:
In conclusion, this research document presents a novel approach to improving routing and packet delivery in Wireless Sensor Networks using the Mamdani Fuzzy Inference System. The proposed method is shown to be effective in enhancing network performance and reducing energy consumption. Future work could explore further optimizations and the integration of additional factors into the fuzzy inference system to improve its robustness and adaptability.
📚2 运行结果
部分代码:
clc;
clear all;
close all;
%% Making Network:
global position N
N=50; % Number of Nodes in network
position=randsrc(2,N,1:1000); % set position of each node in network 1000x1000 meters
S=1; % Source Node
D=50; % Destination Node
Net=zeros(N);
range=250; % Radio propagation range of each node (meter)
plot(position(1,:),position(2,:),'ro');
title('Network');
xlabel('x (m)');
ylabel('y (m)');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]冯仁剑,成坚,许小丰,等.基于Mamdani模糊推理的无线传感器网络可信簇头选举算法[J].高技术通讯, 2010(12):7.DOI:10.3772/j.issn.1002-0470.2010.12.008.
[2]张宏.无线传感器网络分簇路由与数据融合算法优化研究[D].昆明理工大学,2023.
[3]石小培.无线传感器网络低功耗路由协议研究[D].大连理工大学[2024-09-30].DOI:CNKI:CDMD:2.1011.022668.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取