👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:

摘要:柔性作业车间调度问题(Flexible Job-shop Scheduling Problem,FJSP)是经典作业车间调度问题的一个扩展,前者更接近于实际生产。以最小化最大完工时间为目标,提出了一种改进的离散粒子群优化算法。传统粒子群优化算法一般适用于优化连续模型问题,FJSP作为复杂度比较高的组合优化问题,是一种典型的离散模型。提出的算法采用机器负荷平衡机制初始化粒子种群,在粒子的更新过程中引入了3个操作算子来更新粒子的工序排序部分和机器分配部分,这3个算子分别为基于工序排序或机器分配的变异、与个体最优位置之间进行工序先后顺序保留的交叉(POX)操作、与全局最优位置进行随机点保存的交叉(RPX)操作。先后执行以上3个算子以完成粒子的一次更新。这种操作能够使种群较快地收敛于最优解。对标准测试案例进行实验的结果表明,所提算法对解决FJSP具有有效性,并且能够快速地搜索到近似最优解;与其他同类算法相比,所提算法在求解效果和收敛速度上均具有优越性。
关键词:
一、引言
FJSP是经典作业车间调度问题的一个扩展,它更接近于实际生产。该问题旨在解决在作业车间中,每个作业包含多个工序,且每个工序可以由多台不同机器加工的情况下,如何安排作业和机器的分配,以最小化最大完工时间。由于FJSP具有高度的复杂性,传统的优化方法难以在合理的时间内找到最优解。因此,本研究提出了一种改进的离散粒子群优化(Particle Swarm Optimization,PSO)算法来解决FJSP。
二、算法原理
传统PSO算法一般适用于优化连续模型问题,而FJSP是一种典型的离散模型。为了将PSO算法应用于FJSP,本研究进行了以下改进:
- 粒子编码:采用合适的编码方式来表示FJSP的解,即每个粒子表示一个可能的作业和机器分配方案。
- 初始化种群:采用机器负荷平衡机制来初始化粒子种群,以确保种群的多样性和质量。
- 操作算子:在粒子的更新过程中,引入基于工序排序或机器分配的变异、与个体最优位置之间进行工序先后顺序保留的交叉(POX)操作、与全局最优位置进行随机点保存的交叉(RPX)操作等三个操作算子来更新粒子的工序排序部分和机器分配部分。
三、算法步骤
- 生成初始种群:根据种群大小、作业数量、机器数量等参数生成初始种群。
- 计算适应度:对每个粒子进行解码,计算其对应的FJSP解的适应度(即最大完工时间)。
- 更新个体最优和全局最优:根据适应度更新每个粒子的个体最优位置和全局最优位置。
- 迭代更新:在迭代过程中,按照预设的迭代次数或收敛条件,不断使用操作算子更新粒子,并重新计算适应度。
- 输出最优解:当达到迭代次数或收敛条件时,输出全局最优解。
四、实验结果与分析
为了验证所提算法的有效性,本研究对标准测试案例进行了实验。实验结果表明,所提算法能够快速地搜索到近似最优解,并且在求解效果和收敛速度上均优于其他同类算法。
五、结论与展望
本研究提出了一种基于改进的离散PSO算法的FJSP求解方法,该方法在求解效果和收敛速度上均表现出优越性。未来,可以进一步探索其他优化算法在FJSP中的应用,以及将FJSP与其他实际问题相结合进行深入研究。
📚2 运行结果
#总共15个Brandimarte文件
for i in range(15):
#每个数据用例都测试10次,取最好的一次结果,如果为了效率可以每个数据都测试1次
results = [solve_FJSP(i,j) for j in range(10)]
Pg_list = [result[0] for result in results ]
fitness_list = [result[1] for result in results ]
job_op_num = results[0][2]
p_table = results[0][3]
best_fitness_index = np.argmax(np.array(fitness_list))
best_fitness = fitness_list[best_fitness_index]
best_Pg = Pg_list[best_fitness_index]
#画图,写入.txt文档
path= './BestFitness/BrandimarteMk'+str(i+1)+'/'
Decode.decode(best_Pg,job_op_num,p_table,'save',path)
print(best_Pg,best_fitness)
with open(path+'best_schedule.txt', 'w') as f:
f.write(str(best_Pg)+'\n'+str(best_fitness))

部分代码:
# 生成初始种群
# 种群大小,可以根据m和n的值来调整大小,如C*m*n c为一个常系数
# Popsize = 5*p_table.shape[1]*len(job_op_num)
Popsize = 200
encode = Encode(Popsize, p_table, job_op_num)
# 全局选择的染色体
global_chrs = encode.global_selection()
# #局部选择的染色体
local_chrs = encode.local_selection()
# #随机选择的染色体
random_chrs = encode.random_selection()
# 合并三者,得到初始的种群
chrs = np.vstack((global_chrs, local_chrs, random_chrs))
# 以下是关于操作染色体的代码
# 初始的超参数赋值
o_mega = 0.15
c1 = 0.5
c2 = 0.7
pf_max = 0.8
pf_min = 0.2
# 迭代次数,也可以根据m和n的值来调整大小,
# Iter = 5*p_table.shape[1]*len(job_op_num)
Iter = 200
# 得到初始的个体最优位置
P = copy.deepcopy(chrs)
# 得到初始的全局最优位置
# Decode.decode(chr,job_op_num,p_table,'decode'),其中的‘decode’表示不画图,只是计算适应度
fitness_list = [Decode.decode(chr, job_op_num, p_table, 'decode',None) for chr in P]
Pg = P[np.argmin(fitness_list)]
for iter in range(Iter):
# 计算pf
pf = pf_max - (pf_max - pf_min) / Iter * iter
# 更新种群中所有的染色体
copy_chrs = copy.deepcopy(chrs)
chrs = [pso.f_operator(job_op_num, p_table, chr, P[index], Pg, pf, o_mega, c1, c2) for index, chr in
enumerate(copy_chrs)]
# 更新个体最优位置
P = np.array([chr1 if Decode.decode(chr1, job_op_num, p_table, 'decode',None) <= Decode.decode(chr2, job_op_num,
p_table, 'decode',None)
else chr2 for chr1, chr2 in zip(P, chrs)])
# 更新全局最优位置
fitness_list = [Decode.decode(chr, job_op_num, p_table, 'decode',None) for chr in P]
Pg = P[np.argmin(fitness_list)]
# for chr in chrs:
# print(Decode.decode(chr, job_op_num, p_table, 'decode',None))
# print("第" + str(iter + 1) + '次循环的最优fitness:', Decode.decode(Pg, job_op_num, p_table, 'decode',None))
print("第"+str(file_num+1)+'个数据集,第'+str(run_times+1)+'次运行'+'迭代:'+str(iter+1)+'/'+str(Iter))
fitness = Decode.decode(Pg, job_op_num, p_table, 'decode',None)
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]丁舒阳,黎冰,侍洪波.基于改进的离散PSO算法的FJSP的研究[J].计算机科学,2018,45(04):233-239+256.
1142

被折叠的 条评论
为什么被折叠?



