高斯环境中QAM 16调制的大量SNR值的BER,为每个BER测量计算100个误差,以获得更好的结果研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

研究文档

一、研究背景

二、理论基础

三、实验方法

四、实验结果与分析

五、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

以下是关于在高斯环境中使用16-QAM调制时,通过测量大量SNR值对应的BER(误码率)的研究文档。为了确保结果的准确性,每个BER测量都基于100个误差进行计算。

研究文档

一、研究背景

在高斯白噪声(AWGN)环境中,16-QAM(Quadrature Amplitude Modulation,正交幅度调制)是一种常用的调制技术。它通过将输入的数字数据分成4位一组,每组数据映射到一个4x4的星座图中的信号点,从而实现调制。每个信号点代表一个特定的幅度和相位组合,通过正交调制将两个载波信号叠加在一起,形成调制后的信号。

二、理论基础
  1. SNR与BER的关系

    • 信噪比(SNR)是衡量信号强度与噪声强度之间关系的指标。
    • 误码率(BER)是指在接收信号中出现的错误比特数占总比特数的比例。
    • 在高斯白噪声信道中,16-QAM的理论误码率可以通过公式推导得到。误符号率(SER)的公式为:SER = 2 * (1 - 1/sqrt(M)) * Q(sqrt(3 * SNR / (M - 1))),其中M为调制阶数(对于16-QAM,M=16),Q函数为高斯误差函数。
    • 误比特率(BER)可以表示为:BER = SER / log2(M)。
  2. 16-QAM的格雷映射

    • 格雷映射是一种特殊的映射方式,它使得相邻的符号在星座图上只有一位比特不同,从而减少了误码传播的可能性。
三、实验方法
  1. 生成随机二进制序列

    • 为了模拟实际的通信过程,需要生成大量的随机二进制序列作为输入数据。
  2. 16-QAM调制

    • 使用MATLAB等仿真工具,将生成的二进制序列按照格雷映射规则映射到16-QAM的星座图上,得到调制后的信号。
  3. 添加高斯白噪声

    • 在调制后的信号上添加不同强度的高斯白噪声,以模拟不同的SNR条件。
  4. 16-QAM解调

    • 在接收端,对接收到的信号进行解调,将其映射回原始的二进制序列。
  5. 计算BER

    • 对于每个SNR值,重复上述过程100次,并记录每次的误码数。然后计算平均BER作为该SNR值下的BER测量结果。
四、实验结果与分析
  1. 数据记录

    • 记录下每个SNR值对应的BER测量结果,以及每个测量过程中的误码数。
  2. 绘制曲线

    • 使用MATLAB等绘图工具,将SNR值与对应的BER绘制成曲线图。这有助于直观地观察SNR与BER之间的关系。
  3. 结果分析

    • 分析曲线图,可以发现随着SNR的增加,BER逐渐降低。这符合理论预期,因为SNR越高,信号与噪声的比值越大,信号更容易被正确解码。
    • 通过比较不同SNR值下的BER测量结果,可以评估16-QAM调制在高斯白噪声环境中的性能表现。
五、结论

本研究通过在高斯环境中使用16-QAM调制,并测量大量SNR值对应的BER,得到了以下结论:

  • 随着SNR的增加,BER逐渐降低。
  • 16-QAM调制在高斯白噪声环境中表现出良好的性能。
  • 通过优化调制和解调过程,以及采用更先进的纠错编码技术,可以进一步提高16-QAM调制的性能。

📚2 运行结果

部分代码:

% Frame Length 'Should be multiple of four or else padding is needed'
bit_count = 4*1000;

% Range of SNR over which to simulate 
Eb_No = -6: 1: 10;

% Convert Eb/No values to channel SNR
% Consult BERNARD SKLAR'S book 'Digital Communications, Principles 
% and Applications'.
SNR = Eb_No + 10*log10(4);

% Start the main calculation loop
for aa = 1: 1: length(SNR)
    
    % Initiate variables
    T_Errors = 0;
    T_bits = 0;
    
    % Keep going until you get 100 errors
    while T_Errors < 100
    
        % Generate some random bits
        uncoded_bits  = round(rand(1,bit_count));

        % Split the stream into 4 substreams
        B = reshape(uncoded_bits,4,length(uncoded_bits)/4);
        B1 = B(1,:);
        B2 = B(2,:);
        B3 = B(3,:);
        B4 = B(4,:);
        
        % 16-QAM modulator
        % normalizing factor
        a = sqrt(1/10);

        % bit mapping
        tx = a*(-2*(B3-0.5).*(3-2*B4)-j*2*(B1-0.5).*(3-2*B2));
        
        % Noise variance
        N0 = 1/10^(SNR(aa)/10);

        % Send over Gaussian Link to the receiver
        rx = tx + sqrt(N0/2)*(randn(1,length(tx))+i*randn(1,length(tx)));
        
%---------------------------------------------------------------

        % 16-QAM demodulator at the Receiver
        a = 1/sqrt(10);

        B5 = imag(rx)<0;
        B6 = (imag(rx)<2*a) & (imag(rx)>-2*a);
        B7 = real(rx)<0;
        B8 = (real(rx)<2*a) & (real(rx)>-2*a);
        
        % Merge into single stream again
        temp = [B5;B6;B7;B8];
        B_hat = reshape(temp,1,4*length(temp));
    
        % Calculate Bit Errors
        diff =  uncoded_bits - B_hat ;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]高欢芹,酆广增,朱琦.AQAM系统最佳信噪比门限值的研究及其在IEEE802.16e中的应用[J].电子学报, 2009(7):5.

[2]刘善琪,李永兵,田会全,等.影响b值计算误差的MonteCarlo实验研究[J].地震, 2013, 33(4):10.

[3]于风云,张平.QAM调制与解调的全数字实现[J].现代电子技术, 2005, 28(3):3.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值