💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议粉丝按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源:
提出了一种自适应正则化基于核的模糊C-均值聚类框架,用于脑磁图分割共振图像。该框架可以以三种算法的形式出现,用于将局部平均灰度替换为平均滤波器、中值滤波器和设计的加权图像的灰度。算法采用了异质性利用邻域内的灰度,并利用这种测量方法来获取局部上下文信息,并取代标准的欧几里德使用高斯径向基核函数计算距离。主要优点是适应当地环境,增强鲁棒性为了保留图像细节、独立于聚类参数并降低计算成本。这些算法已经根据具有不同类型和水平的噪声的合成和临床磁共振图像进行验证,并进行比较最近有6种软聚类算法。实验结果表明,所提出的算法在保持图像质量方面具有优越性在保持低计算复杂性的同时,提供细节和分割精度。
自适应正则化核函数模糊聚类分析框架提出了增强原始FCM以获得更高性能的建议低计算成本的分割精度。该框架可以表现为三种算法的形式,这些算法采用了所采用的邻域灰度异质性以获取本地上下文信息。主要优点是对当地环境的适应性、增强的鲁棒性以及聚类参数的独立性,以减少计算量成本。GRBF核已被采用作为距离度量。我们在合成和临床数据上验证了提出的算法肿瘤的MR图像。所提出的算法达到了更高的JS(表1、2和3)和更低的熵度量𝐸(表4)比最近6种软聚类算法和可以保留小的图像细节(图2、3、4、5和6)。In此外,所提出的算法具有较低的计算复杂度成本,并且据我们所知,是唯一的算法这些方法适应于本地环境,不包括集群中心。因此,他们实现了高成本与高收益之间的权衡分割精度高,计算成本低。所提出的算法可能是分割大脑的潜在工具用于进一步处理的MR图像以及其他图像。
图像分割是将图像划分为有意义的区域具有相似特征的非重叠区域。细分脑磁共振(MR)图像的采集对于区分白质(WM)、灰质(GM)和脑脊液(CSF)。这种细分对于研究解剖结构变化和大脑量化[1]。这也是肿瘤生长建模的先决条件,因为肿瘤根据周围环境以不同的速度扩散组织[2]。由于可能存在噪声、偏置场和部分容积效应,脑部图像分割仍然存在具有挑战性的。图像分割技术大致可分为[3]阈值分割、区域生长、聚类、边缘检测检测和基于模型的方法。聚类是一种无监督学习策略,它将相似的模式分组簇,可以是硬簇或软簇。软聚类是首选,因为每个像素都可以被分配到具有不同隶属度值[4,5]的所有聚类中。应用于MR图像的最流行的软聚类方法是[4]模糊𝐶-均值(FCM)聚类[6,7]、混合建模和两者的混合方法。虽然FCM算法具有很好的准确性在无噪声的情况下,它对噪声和其他干扰敏感成像伪影。因此,已经尝试了增强功能通过包括当地空间和灰度信息[8-14],将简要阐述在第2节中。由有限数量的高斯分布组成的混合模型已被用于脑部MR图像分割。将当地信息纳入的主要策略混合模型是使用隐马尔可夫随机场更精确的分割[15]。Nikou等人[16]提出一个分层和空间受限的混合模型通过施加不同的权重来考虑空间信息每个聚类概率的平滑度先验像素邻域。在[17]中,非参数贝叶斯脑部磁共振成像(MR)图像组织分类模型,称为探索了狄利克雷过程混合模型。Nguyen和Wu [18]介绍了一种结合空间信息的方法
相邻像素之间的高斯混合模型(GMM)。详细文章见第4部分下载。
📚2 运行结果
部分代码:
load('noise.mat')
%%%%%% Initialization %%%%%%%%%
winSize=3; % Size of the local window
cNum=4; % Number of clusters
opt='average'; % Filtered image version "average", "median", or "weighted"
%%%%% Uncomment the desired image to run the experiment (for more details, plz refer to the paper)
img=no720_100A; % Axial slice no. 100 corrupted with 7% noise and 20% grayscale non-uniformity
% img=no720_100S; % Sagital slice no. 100 corrupted with 7% noise and 20% grayscale non-uniformity
% img=rice10_91A; % Axial slice no. 91 corrupted with 10% Rician noise
% img=Brats1; % Slices no. 80 from pat266_1 (Brats challenge 2014)
% img=Brats2; % Slices no. 86 from pat192_1 (Brats challenge 2014)
[r,c]=size(img);
img=double(img);
%%% Function calls %%%%
w=PixWgt(img,winSize);
segment=ARKFCM(img,w,opt,cNum);
%%% Defuzzification process
[mMax,segment]=max(segment.U,[],2);
segment=reshape(segment,r,c);
%%% Note: the appearance of the segmented image may look different due to
%%% the order of the label values
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取