具有吸引子的非线性系统(Matlab&Simulink实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、基本概念与定义

三、非线性系统的吸引子类型

四、研究方法与工具

五、研究现状与挑战

六、应用前景与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码&Simulink仿真实现


💥1 概述

要在Simulink中实现具有吸引子的非线性系统,可以按照以下步骤进行操作:

1. 打开Simulink并创建一个新的模型。

2. 在模型中添加非线性系统的表示。可以使用Math Function块、Lookup Table块或者自定义的S函数来表示非线性系统的动态行为。根据你所建模的具体系统,选择合适的模块来表示非线性函数。

3. 在系统中添加具有吸引子效应的元素。这可以包括非线性函数中的非线性项、延迟项、反馈或者其他非线性特征。根据具体的吸引子效应,调整系统中的参数和配置。

4. 设置系统的初始条件。使用Initial Condition块来设置模型初始条件。这些初始条件可以影响系统的稳定性和吸引子的形成。

5. 运行模型并观察吸引子效应。使用Simulink模拟器运行模型,并观察系统的行为。通过调整吸引子参数和系统的其他特性,可以进一步探索系统的响应。

一、引言

非线性系统广泛存在于自然界和工程领域中,如天体力学、流体力学、化学动力学、等离子物理学、非线性光学、数理经济学、人工智能以及环境污染等学科。这些系统往往表现出复杂的动态行为,包括稳定性、混沌、分支以及吸引子等现象。其中,吸引子是非线性系统的一个重要特征,它描述了系统长时间演化后的归宿或稳定状态。

二、基本概念与定义

  1. 非线性系统:指系统状态变量之间的关系不是线性的,即不满足叠加原理的系统。
  2. 吸引子:在非线性动力系统中,吸引子是指系统状态在长时间演化后趋于的一个稳定状态或状态集合。它可以是点吸引子、线吸引子、面吸引子或更复杂的集合吸引子。
  3. 全局吸引子:是指对所有初始条件都成立的吸引子,即无论系统从哪个初始状态出发,最终都会演化到该吸引子上。

三、非线性系统的吸引子类型

  1. 点吸引子:系统状态最终趋于一个固定的点。
  2. 极限环:系统状态在长时间演化后趋于一个闭合的曲线或环。
  3. 奇怪吸引子:具有分数维数的吸引子,通常出现在混沌系统中。奇怪吸引子具有复杂的几何结构和动态行为,是混沌现象的重要标志。

四、研究方法与工具

  1. 数学方法:包括构造问题的近似解、作出近似解的先验估计等。近似解的得来可根据Galerkin方法和Faedo-Galerkin方法,近似解的收敛性可通过能量不等式以及Sobolev嵌入定理证明得到。
  2. 数值模拟:利用Matlab、Simulink等软件进行数值模拟,可以直观地观察系统的动态行为和吸引子的形成过程。
  3. 实验验证:在实验室中构建非线性系统模型,通过实验数据验证理论分析和数值模拟的结果。

五、研究现状与挑战

  1. 研究现状:目前,关于具有吸引子的非线性系统的研究已经取得了许多重要的成果。例如,在无穷维动力系统中,已经建立了整体吸引子的存在性、正则性、稳定性以及维数估计等理论。
  2. 挑战:尽管已经取得了许多进展,但具有吸引子的非线性系统仍然存在许多挑战。例如,如何准确刻画复杂系统的吸引子结构、如何理解吸引子与混沌现象之间的关系、如何有效预测系统的长期行为等。

六、应用前景与展望

  1. 应用前景:具有吸引子的非线性系统在许多领域都有广泛的应用前景。例如,在控制工程中,可以利用吸引子的性质设计稳定的控制系统;在数据科学中,可以利用吸引子进行数据挖掘和模式识别;在生物学中,可以利用吸引子研究生物系统的稳定性和动态行为等。
  2. 展望:未来,随着数学理论、计算技术和实验方法的不断发展,具有吸引子的非线性系统的研究将更加深入和广泛。人们将能够更准确地刻画系统的吸引子结构、理解吸引子与混沌现象之间的关系、预测系统的长期行为,并为实际应用提供更加有力的理论支持和技术手段。

📚2 运行结果

 

 

部分代码:

% ax was there in sfunxy, for everything else there's varargin
        if length(ax)~=6, error('Axes limits must be defined.'); end
        
        % get number of moving points (i.e. number of lines) to be plotted
        if nargin>6, nmax=fix(varargin{2}); else nmax=1; end
        
        sizes=simsizes; % this initializes size vector to zero
        sizes.NumInputs      = 3*nmax; % input vector size at runtime
        sizes.NumSampleTimes = 1; % fill number of sample times
        
        % get sample time
        if nargin>5, ts=[varargin{1} 0]; else ts=[0.01 0]; end
        
        % return initialization values to simulink as function outputs
        sys=simsizes(sizes);x0=[];str=[];
        
        % get the active figure parameter (toolbar and menubar)
        if nargin>13 && varargin{9}, tb='figure'; else tb='none'; end
        
        % do the figure initialization
        FigHandle=get_param(gcbh,'UserData');
        if isempty(FigHandle) || ~ishandle(FigHandle)
            % the figure doesn't exist, create one
            FigHandle = figure(...
                'Units',          'pixel',...
                'Position',       [100 100 400 300],...
                'Name',           get_param(gcbh,'Name'),...
                'Tag',            'SIMULINK_3DGRAPH_FIGURE',...
                'NumberTitle',    'off',...
                'IntegerHandle',  'off',...
                'Toolbar',        tb,...
                'Menubar',        tb);
        else
            % otherwise clear it
            clf(FigHandle);
        end
        
        % get number of moving points, camera position, and grid switch
        if nargin>7, CPos=varargin{3}; else CPos=[3 2 1]*100; end
        if nargin>8 && varargin{4}, GdSw='On'; else GdSw='Off'; end
        
        % Note: the structure pd contains all the plot data and will be
        % later stored in the figure's userdata!
        
        % create axes
        pd.XYZAxes = axes('Parent',FigHandle);
        cord=get(pd.XYZAxes,'ColorOrder');
        set(pd.XYZAxes,'Visible','on','Xlim', ax(1:2),'Ylim', ax(3:4),'Zlim', ax(5:6),'CameraPosition',CPos,'XGrid',GdSw,'YGrid',GdSw,'ZGrid',GdSw);
        
        % get LineStyle string, Marker string, and max num of line points
        if nargin>9, ls=varargin{5}; else ls='-'; end
        if nargin>10, mk=varargin{6}; else mk='none'; end
        if nargin>11, mx=varargin{7}; else mx=1e5; end
        
        % create a vector of animatedline objects
        pd.XYZLine = [];
        for n=1:nmax
            pd.XYZLine = [pd.XYZLine animatedline('Parent',pd.XYZAxes,'LineStyle',ls,'Marker',mk,'MaximumNumPoints',mx,'Color',cord(1+mod(n-1,size(cord,1)),:))];
        end 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘博伦. 具有隐藏吸引子的非线性系统混沌特性研究[D].华北电力大学(北京),2020.DOI:10.27140/d.cnki.ghbbu.2020.001358.

[2]董二女. 粉末注射成形动力系统的混沌吸引子形态研究[D].中南大学,2011.

🌈4 Matlab代码&Simulink仿真实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值