💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
本书是一部全面而深入地探讨目标定位技术及其相关应用的权威之作,它系统性地分析了目标定位的基本原理、定位算法的模拟实践,以及在动态目标追踪过程中至关重要的状态评估技术。全书精心布局,共划分为八个逻辑严密、内容丰富的章节,旨在为读者提供一个从基础理论到高级应用的全方位学习路径。
第一章,MATLAB基础仿真技艺,是本书的技术基石。这一章节不仅系统介绍了MATLAB这一强大仿真工具的基础操作,还详细阐述了数组的创建、特性、操作方式,以及结构体与元胞数组在数据处理中的灵活应用。此外,读者还将学习到条件与循环语句的高效运用、函数编写的核心技巧,以及图形绘制的艺术,为后续章节的深入学习打下坚实的基础。
第二章,目标定位与追踪系统全览,为读者揭开了目标定位追踪系统的神秘面纱。本章清晰界定了相关基本概念,包括观测系统、定位的基本原理、典型的定位系统以及目标追踪的数学模型。同时,深入剖析了多观测站系统架构的复杂性、追踪流程的精确描述以及追踪轨迹的动态解析,为读者构建了一个全面而深入的知识框架。
第三章,目标定位算法深度解析,是本书的技术核心之一。本章聚焦于多种目标定位算法的详细介绍,从质心定位、加权质心定位、网格定位等基础算法,到基于测距的定位算法(如最小二乘定位、RSSI测距定位)和基于角度的定位算法,无一不涵盖。同时,对移动目标定位算法及其计算机模拟建模进行了深入探讨,为读者提供了丰富的实践指导和理论支持。
第四章,线性Kalman滤波技术的奥秘,揭示了这一经典滤波算法在目标追踪中的广泛应用。本章深入剖析了线性Kalman滤波的原理,并通过实例展示了其在一维观测信号降噪处理、自由落体运动追踪、船舶GPS导航定位以及视频图像目标追踪等场景中的卓越性能。
第五章,非线性Kalman滤波技术的探索,进一步拓展了读者的视野。本章介绍了扩展Kalman滤波(EKF)和无迹Kalman滤波(UKF)的原理,并深入探讨了它们在非线性系统中的应用。通过具体实例,展示了EKF和UKF在目标追踪中的卓越效果,为读者提供了解决复杂问题的新思路。
第六章,粒子滤波技术的魅力,引领读者进入了一个全新的滤波算法领域。本章详细阐述了粒子滤波的基本原理、蒙特卡洛采样方法以及经典采样算法,并深入探讨了粒子滤波在高斯模型和非高斯模型目标追踪系统中的应用。通过生动的案例,展示了粒子滤波在解决非线性、非高斯问题中的独特优势。
第七章,多目标追踪算法的探讨,是本书的另一大亮点。本章对多目标追踪系统的建模与分类算法进行了全面讨论,包括近邻法、k-近邻法以及基于Kalman滤波和粒子滤波的多目标追踪算法。通过深入剖析这些算法的原理和应用场景,为读者提供了解决多目标追踪问题的有效策略。
第八章,Simulink仿真技术的运用,为本书的学习之旅画上了圆满的句号。本章全面介绍了Simulink这一强大仿真工具的基本功能,详细讲解了模块库的使用、S函数的设计以及基于Simulink的目标追踪系统建模方法。通过实践案例,引导读者将理论知识转化为实际操作技能,为未来的科研和工程实践奠定坚实的基础。
📚2 运行结果
代码截图:
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码实现、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取