👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
参考文献:
摘要:随着需求侧灵活性资源在配电网中的渗透率不断提高,其不协调的运行方式可能会导致配电网中线路阻塞和节点电压越限。为解决这些问题,提出了一种配电网节点边际电价统一出清的主从博弈双层调度框架。上层框架解决用户在负荷聚合商引导下的用电成本最小化问题,负荷聚合商为主从博弈的领导者;下层框架解决配电网系统运营商在考虑网络潮流安全和电压越限前提下的社会福利最大化问题,配电网系统运营商为主从博弈的追随者。利用Karush-Kuhn-Tucker最优性条件和对偶定理,将非线性双层问题转化为单层混合整数线性规划问题求解。仿真算例验证分析了所提出的模型对缓解网络阻塞的有效性,以及灵活性资源在配电网阻塞管理当中的作用。
关键词:
阻塞管理;配电网节点边际电价;需求侧灵活性资源;主从博弈;KKT条件;
近年来,随着主动配电网(active distribution network,ADN)[1] 中需求侧灵活性资源[2-3] 的快
速发展,对减少化石能源消耗、缓解供需平衡和提高供电可靠性起到了积极的作用。然而,由于
需求侧灵活性资源的自然特性或社会行为规律,增加了配电网运行的不确定性和复杂性,可能会
导致线路过载,使配电网易于出现阻塞现象,给配电网运行和调控带来新的挑战。科学合理的配电网阻塞管理能有效提高电网运行的安全性和经济性[4]。现阶段主动配电网中阻塞管理的方法主要有直接管理模式和间接管理模式 2 种 [5]。直接管理模式利用网架重构 [6]、无功功率控制 [7] 以及直接减少负荷有功功率需求,达到缓解阻塞的目的。间接管理模式利用灵活性资源对市场电价的敏感特性,考虑潮流约束,通过激励用户调整阻塞时段的可控负荷,达到缓解电网阻塞和节省用户用电费用的目的[8],方法包括日前动态电价[9]、配电网容量市场、影子价格和灵活性服务市场[10] 等。随着配电网节点边际电价(distribution locational marginal price,DLMP)[11-13] 的发展,很多学者将 DLMP 运用到主动配电网阻 塞管理方案当中,并证明了该方法的有效性。文 献 [14-15] 中通过代理商和配电系统运营商(distribution system operator,DSO)之间电价和负荷信息 的交互,选用一种动态电价的定价方式实现可控负荷和电动汽车(electric vehicle,EV)的用电计划调整,从而减少阻塞时段的用电负荷。该方法是将线路阻塞信息纳入动态电价里,反映网络潮流的实际成本,但其动态电价严重依赖于预测的日前电价的精确性。为了减少日前电价预测的误差对出清电价的影响,文献 [16] 利用节点总电力需求的线性市场价格模型描述日前电价,并借助次梯度法确定阻塞价格,针对功率倒流引起的线路正反向潮流越限问题,提出了基于迭代方法的配电网节点电价(iterative distribution location marginal pricing,IDLMP)的产消者分布式日前优化调度方法,通过购售电阻塞价格分别引导线路潮流双向阻塞问题,但是没有考虑节点电压越限场景;文献 [17] 考虑节点电压越限提出了一种基于 DLMP 的电动汽车聚合调度框架,将集中式电动汽车聚合商调度问题转化为分散式双层优化问题,该框架能使网络中的阻塞最小化,但是单一的灵活性资源缺乏说服性;文献 [18] 以需求侧灵活性资源为例,提出基于 DLMP 的日前–实时阻塞管理模型。旨在通过发布 DLMP 引导负荷聚合商(load aggregator,LA)实现阻塞管理,但其复杂的迭代求解方式很难保证解的收敛性。
下面将给出统一节点边际电价出清的双层调度框架。
基于主从博弈的主动配电网阻塞管理研究
一、主从博弈理论的基本概念与适用性
主从博弈(Stackelberg Game)是博弈论中的一种动态非合作博弈模型,其核心特征是参与者分为“领导者”和“跟随者”两个层级。领导者首先制定策略(如定价、资源分配),跟随者根据领导者的策略调整自身行为以最大化利益。该模型的关键在于逆向归纳法的应用:先求解跟随者的最优反应函数,再优化领导者的策略。
在电力系统中,主从博弈的适用性体现在:
- 多主体协调:适用于电网运营商(领导者)与分布式电源(DG)、储能运营商或用户(跟随者)之间的利益协调。
- 动态优化:通过双层优化框架实现实时调度,例如上层优化电价机制,下层优化能源出力或负荷调整。
- 经济性与灵活性:相比传统方法,主从博弈可兼顾系统运行成本最小化与参与者的经济效益。
二、主动配电网的阻塞管理问题
主动配电网(Active Distribution Network, ADN)通过集成分布式电源(DG)、储能、柔性负荷等可控资源,实现对潮流的主动调节。然而,其阻塞问题主要由以下因素引发:
- DG出力波动:光伏、风电的间歇性导致潮流分布不均。
- 负荷时空聚集:电动汽车、空调负荷的集中用电加剧线路过载。
- 网络结构限制:传统配电网拓扑难以适应双向潮流。
阻塞的负面影响包括线路过载、电压越限、DG弃用及供电可靠性下降。
三、主从博弈在阻塞管理中的典型应用案例
-
双层调度框架
- 模型结构:上层由负荷聚合商制定用电成本最小化策略,下层由配电网运营商以社会福利最大化为目标优化潮流。
- 求解方法:利用KKT条件和对偶定理将非线性双层问题转化为单层混合整数线性规划问题。
- 效果:在IEEE 33节点系统中验证了线路功率和电压约束的满足。
-
电动汽车充电管理
- 策略:基于Stackelberg博弈的动态电价机制,引导用户错峰充电。
- 结果:充电成本降低15%-20%,同时减少电网峰谷差。
-
共享储能优化配置
- 商业模式:储能运营商投资建设储能设施,通过主从博弈定价为风电场提供服务。
- 不确定性处理:结合分布鲁棒优化(DRO)应对新能源出力波动。
-
虚拟电厂资源调度
- 合作联盟:氢储能与电化学储能运营商通过合作博弈形成联盟,提升整体收益。
四、传统阻塞管理方法的局限性
传统方法主要分为直接管理(如网络重构、功率调整)和间接管理(如电价引导),其局限性包括:
- 经济性不足:网络重构需高额投资,且难以适应动态需求。
- 灵活性欠缺:静态调度无法应对DG和负荷的实时波动。
- 多主体协调困难:缺乏利益分配机制,易引发策略冲突。
五、基于主从博弈的阻塞管理研究现状
-
模型构建
- 目标函数:领导者以运行成本最小化为目标(包括网损、阻塞补偿),跟随者以经济效益最大化为目标。
- 约束条件:涵盖潮流安全、电压限值、DG出力范围等。
-
求解算法
- 经典方法:逆向归纳法结合KKT条件。
- 智能算法:自适应粒子群算法、改进遗传算法用于处理非凸问题。
-
仿真验证
- 场景设计:包括可中断负荷、储能参与、新能源不确定性等多场景测试。
- 性能指标:阻塞缓解率、社会福利提升幅度、算法收敛速度。
-
前沿方向
- 多时间尺度优化:日前-日内两阶段调度结合移动式储能。
- 数据驱动模型:深度强化学习用于多主体动态决策。
六、总结与展望
主从博弈通过协调多方利益,为主动配电网阻塞管理提供了兼具经济性与灵活性的解决方案。未来研究需进一步探索:
- 复杂不确定性处理:结合鲁棒优化与机器学习提升模型适应性。
- 多市场耦合机制:电力市场与碳市场的协同优化。
- 分布式算法设计:隐私保护下的多主体协同计算。
该领域的发展将为高比例新能源接入的配电网提供关键技术支持,推动能源系统的低碳转型。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]张晓东,艾欣.基于主从博弈的主动配电网阻塞管理[J].现代电力,2022,39(06):649-658.DOI:10.19725/j.cnki.1007-2322.2021.0090.