基于机器视觉的焊缝缺陷检测方法及其应用研究-文献阅读-2

基于机器视觉的焊缝缺陷检测方法及其应用研究icon-default.png?t=O83Ahttps://kns-cnki-net-s.vpn.swpu.edu.cn:8118/kcms2/article/abstract?v=VcTOyLYtvEyP93LqGIEl3gh5qXQjZwctqlzqwUKb4xxgpHJ31FPScgBbWSUotG__CJCpQLQfHh1vHWixz54dixTs1N4GVpam6BnP7nfeHqjRizjSQ5pZe7sSVrKVUBng_goEqwurkC8UF1CHZDOfrDpXAHzczRGc9u_6zylTBxutmUlrDc6V5kcXrcraSb8W&uniplatform=NZKPT&language=CHS

作者:卢智勇 重庆理工大学

摘要

  1. 解决噪声与焊缝区域对比度低导致的识别缺陷 ---提出改进的Canny算子边缘检测算法

  2. 解决焊缝表面缺陷检测效率与精确度低 ---提出改进yolov5模型算法

  3. 实现焊缝缺陷智能化检测 ---基于PyQt和OpenCV实现焊缝缺陷检测系统

关键词

焊缝缺陷检测;深度学习;机器视觉;边缘检测;YOLOv5

研究背景及意义

焊接过程多样且复杂,焊缝缺陷难以避免,常有咬边、焊瘤、飞溅等表面缺陷与裂纹、夹渣、气孔、未焊透等内部缺陷。

这些缺陷威胁制造业可持续发展,问题亟待解决。

当前 表面缺陷常用:目测检查 内部缺陷常用:磁粉检测、超声波检测、涡流检测、射线检测等无损检测技术

人工检测 高度依赖人工经验、低效、不够全面,易出现错检、漏检

于是 基于机器视觉的焊缝缺陷检测技术能提高焊接质量的稳定性,降低人为因素影响:

  • 提高效率

  • 提高准确率

  • 减少损失和事故

国内外研究现状

  1. 常规检测方法

  2. 基于机器视觉方法

主动视觉:利用结构光等附加光源辅助定位特征点,以获取更好的图像信息 被动视觉:利用CCD摄像机直接采集工件图像,依赖焊接过程中自然产生的图像信息

传统机器学习: 分割、提取、分类

最全综述 | 图像分割算法 深度学习之图像分割

深度学习:克服了传统方法中特征设计的主观性和限制性

两阶段检测模型:R-CNN、Fast R-CNN、Faster R-CNN

单阶段检测模型:YOLO系列 检测速度快,准确率高

主要内容

  1. 解决噪声与对比度低问题,提升图像质量

  2. 改进Canny算法

  3. 改进YOLOv5网络模型

  4. 集成系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值