协方差矩阵

1. 方差和协方差的定义

在统计学中, 方差是用来度量 单个随机变量离散程度,而协方差则一般用来刻画 两个随机变量相似程度,其中, 方差的计算公式为
\sigma_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
其中,n表示样本量,符号 \bar{x}表示观测样本的均值

 

在此基础上,协方差的计算公式被定义为

\sigma(x, y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)

在公式中,符号 \bar{x},\bar{y} 分别表示两个随机变量所对应的观测样本均值,据此,我们发现:方差 \sigma_{x}^{2} 可视作随机变量 x 关于其自身的协方差 \sigma (x,x).

2. 从方差/协方差到协方差矩阵

\sigma(x_{k}, x_{k})=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{ki}-\bar{x_{k}}\right)^2,k=1,2,...,d

根据方差的定义,给定d个随机变量 x_{k},k=1,2,...,d ,则这些随机变量的方差

其中,为方便书写,x_{ki}表示随机变量 x_{k}中的第i个观测样本,n表示样本量,每个随机变量所对应的观测样本数量均为n

对于这些随机变量,我们还可以根据协方差的定义,求出两两之间的协方差,即

\sigma(x_{m}, x_{k})=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{mi}-\bar{x_{m}}\right)(x_{ki}-\bar{x_{k}})

因此,协方差矩阵

\sum =\begin{pmatrix} \sigma (x_{1},x_{1}) & ... &\sigma (x_{1},x_{d}) \\ ...& ... & ...\\ \sigma (x_{d},x_{1}) & ... &\sigma (x_{d},x_{d}) \end{pmatrix} \in \mathbb{R}^{d \times d}

其中,对角线上的元素为各个随机变量的方差,非对角线上的元素为两两随机变量之间的协方差,根据协方差的定义,我们可以认定:矩阵 Σ 为对称矩阵(symmetric matrix),其大小为 d × d。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值