1. 方差和协方差的定义
在统计学中, 方差是用来度量 单个随机变量的 离散程度,而协方差则一般用来刻画 两个随机变量的 相似程度,其中, 方差的计算公式为
其中,n表示样本量,符号 表示观测样本的均值
在此基础上,协方差的计算公式被定义为
在公式中,符号 , 分别表示两个随机变量所对应的观测样本均值,据此,我们发现:方差 可视作随机变量 x 关于其自身的协方差 .
2. 从方差/协方差到协方差矩阵
根据方差的定义,给定d个随机变量 ,k=1,2,...,d ,则这些随机变量的方差为
其中,为方便书写,表示随机变量 中的第个观测样本,表示样本量,每个随机变量所对应的观测样本数量均为。
对于这些随机变量,我们还可以根据协方差的定义,求出两两之间的协方差,即
因此,协方差矩阵为
其中,对角线上的元素为各个随机变量的方差,非对角线上的元素为两两随机变量之间的协方差,根据协方差的定义,我们可以认定:矩阵 Σ 为对称矩阵(symmetric matrix),其大小为 d × d。