大语言模型--显存爆炸?671B模型+128K Token,到底需要多少GPU显存?

本文第一章:以LLaMA-2-13B模型为例,计算了大语言模型推理阶段所必须的GPU显存大小;

本文第二章:Deepseek-671b等不同参数量的模型,根据不同Token数以及不同并发请求数的情况下,所需要的GPU显存大小。

一、LLM推理阶段所需的GPU显存

大模型推理过程中对GPU显存的需求主要涉及三方面:模型权重(Model Weights)、KV缓存(Key-Value Cache)、额外内存开销(Memory Overhead)。

1.0 下面以LLaMA-2-13B模型为例:

1.1 模型权重(Model Weights)

对于 LLaMA-2-13B模型,参数量为130亿,每个参数( FP16)占2字节,模型大小 = 13 * 10^9  × 2 byte =26 * 10^9 byte= 26 GB

1.2 KV缓存(Key-Value Cache)

Transformer 模型中为了从不同的表示空间中学习不同角度的语义信息。比如有的 head 学习语法结构,有的 head 学习语义关联,有的 head 学习长距离依赖等,因此对于每层Transformer 设置了多个attention head(子注意力模块)。下面我们由浅入深,从(a) 、(b) 、(c) 、(d) 、(e) 来依次计算一下KV Cache:

(a) 1层Transformer ,1个attention head,1个token

对于每一个 attention head 来说:每个 token 会生成一个 key 向量和一个 value 向量,key 向量和 value 向量的长度都是128 (head_dim)

每个 token 在一个 attention head 中占用的空间包括key和value为:
key: head_dim × 2 Bytes = 256 字节(FP16);value: head_dim × 2 Bytes = 256 字节
因此,1层Transformer ,1个attention head,1个token下会占512byte的显存:512 字节 / token / attention head/Transformer

(b) 1层Transformer ,1个attention head,4096个token

接下来看1层Transformer ,1个attention head,4096个tokens中缓存多少内容:

KV Cache per head per layer per request =

max_seq_len (4096) × (key + value = 2) × head_dim (128) × precision_size (2 Bytes) = 4096 × 2 × 128 × 2 = 2,097,152 字节 ≈ 2 MB

因此,每个 attention head 缓存约 2MB 的 key/value 数据。

(c) 1层Transformer ,40个attention head,4096个tokens

如果你有 40 个 attention head,那么一层 Transformer 就需要:2,097,152 字节 × 40 heads = 83.89 MB / layer / request

(d) 40层Transformer ,40个attention head,4096个tokens,10个并发请求

那么40 层 × 10 个并发请求:83.89 MB × 40 layers × 10 requests = 33554 MB = 32 G

(e) KV Cache总计

KV Cache =   kv_factor(2)× head_dim (128) × precision_size (2 Bytes) ×max_seq_len (4096) × num_heads × num_layers × batch_size= 2 × 128  × 2 × 4096 × 40 × 40 × 10 = 33,554,432,000字节≈33.55GB

参数名含义
num_layersTransformer 层数(模型深度),40
num_heads每层的注意力头数量,40
head_dim每个注意力头中 key/value 向量的维度,128
max_seq_len单个请求的最大 token 数(即序列长度),4096
batch_size同时处理的请求数(并发数),10
kv_factor每个 token 要缓存 key 和 value 两个张量,2
precision_size每个浮点数值所占字节数,2

1.3 额外内存开销(Memory Overhead)

这部分包括:

  • 中间激活值(Activation memory)
  • 缓冲区(Scratch memory)、临时张量等
  • 框架开销(如 PyTorch、TensorRT、vLLM 等)

一般经验上,这部分可以估计为:

Overhead=0.1×(26+33.55)≈5.955GB

1.4 总 GPU 显存

LLaMA-2 13B 在 10 并发、4096 Token 上下文场景下的显存需求估算

类别数值
模型权重26 GB
KV Cache~33.55 GB
内存开销(10%)~5.96 GB
总计~65.5 GB

实际部署中显存可能更低

  • 使用 分片加载(Tensor Parallelism) 可以将模型拆到多个 GPU 上。
  • 使用 KV Cache 压缩(如 vLLM) 可以降低内存占用。
  • 使用 量化(INT8/INT4) 可大幅减少模型权重和中间激活内存。
  • 使用 批处理优化(Batching Optimization) 可提高吞吐效率。

二、671b等大模型的显存表格

1、不同规模模型在不同序列长度下的显存需求

各规模模型在不同最大序列长度和10并发数下的显存需求如下表所示:

模型规模4k8k32k64k128k
7B16.7GB33.3GB133.3GB266.6GB533.3GB
13B33.5GB67.0GB268.0GB536.0GB1072.0GB
30B74.5GB149.0GB596.0GB1192.0GB2384.0GB
66B167.4GB334.8GB1339.2GB2678.4GB5356.8GB
70B178.3GB356.6GB1426.4GB2852.8GB5705.6GB
175B286.7GB573.3GB2293.3GB4586.7GB9173.3GB
671B167.4GB334.8GB1339.2GB2678.4GB5356.8GB

计算说明

  • 所有模型均采用FP16精度(2字节/参数)
  • 并发数(batch_size)为10
  • DeepSeek 671B的KV缓存已应用MLA架构压缩(乘以0.135(KV缓存压缩率))

2、不同规模模型的架构参数

上述模型都基于LLaMA-2系列架构参数和参数量规律,各规模模型的架构参数如下表所示:

模型规模参数量层数注意力头数隐层维度KV缓存压缩率
7B7B323240961.00
13B13B404051201.00
30B30B484861441.00
66B66B646481921.00
70B70B806481921.00
175B175B2896122881.00
671B671B8012881920.135

LLaMA-2系列:7B、13B、30B、66B、70B均采用标准Transformer架构,使用分组查询注意力(GQA)提高推理可扩展性。参数量与层数、头数和隐层维度的平方成正比。例如,LLaMA-2 7B有32层、32头、4096维度,而70B扩展为80层、64头、8192维度。

Falcon 175B:采用GQA架构,假设其有28层、96头、12288维度,总参数量约为175B。

DeepSeek 671B:采用多头潜在注意力(MLA)架构,将KV缓存压缩至原始大小的13.5%(每个token仅需70KB,而传统模型如LLaMA-3.1需要516KB)。这种压缩技术显著降低了长序列推理的内存需求。

三、LLM 训练阶段,需要数百 GB 的显存

以 LLaMA-2 13B 训练为例(FP32):

  • 模型参数:13B × 4 Bytes = 52 GB
  • 梯度存储:52 GB(和参数同规模)
  • 优化器状态(AdamW):约 104 GB(含动量和方差)
  • 中间激活值:几十 GB(取决于 batch size 和 seq length)
  • 批量数据本身:也占一定内存

所以训练一个 LLaMA-2 13B 模型可能需要数百 GB 的显存,必须使用多卡分布式训练(如 DeepSpeed + ZeRO)。

<think>我们使用Hugging Face的`transformers`库来加载和运行safetensors格式的模型。由于模型ID是`unsloth/Llama-3.2-1B-Instruct`,我们可以利用`transformers`和`accelerate`库(用于GPU加速)来运行模型。 步骤: 1. 安装必要的库:transformers, accelerate, torch, safetensors(通常transformers会依赖这些,但确保安装) 2. 使用`AutoModelForCausalLM`和`AutoTokenizer`加载模型和分词器 3. 将模型放到GPU上 4. 使用模型进行推理(生成文本) 注意:由于模型较大(1.2B参数),确保有足够的GPU内存(大约需要2.4GB左右,但实际可能更多,因为还有激活和优化器状态,但在推理时通常1.2B模型需要约2.5-3GB显存) 代码示例: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "unsloth/Llama-3.2-1B-Instruct" # 加载分词器和模型 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", # 自动分配设备(GPU) torch_dtype=torch.float16, # 使用半精度减少内存占用 ) # 输入文本 prompt = "给我解释一下人工智能的未来。" messages = [ {"role": "user", "content": prompt} ] # 使用分词器处理输入 input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) # 生成配置 generation_params = { "max_new_tokens": 256, "do_sample": True, "temperature": 0.7, "top_p": 0.9, } # 生成文本 outputs = model.generate(input_ids, **generation_params) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` 注意: - 使用`device_map="auto"`让transformers自动将模型加载到可用GPU上。 - 使用`torch.float16`可以显著减少显存占用,但可能会略微降低精度(对于1.2B模型通常可以接受)。 - 根据你的GPU显存情况,可能需要调整`max_new_tokens`(生成的最大新token数)或使用量化(如bitsandbytes)来进一步减少内存占用。但1.2B模型在大多数现代GPU上(如RTX 3060 12GB)应该可以直接运行。 如果遇到显存不足的问题,可以考虑: - 使用`torch_dtype=torch.bfloat16`(如果GPU支持bfloat16) - 使用量化(如8位或4位量化),但需要安装`bitsandbytes`库,并在`from_pretrained`中添加`load_in_4bit=True`或`load_in_8bit=True`参数。 §§相关问题§§ 1. 如果显存不足,如何用4位量化加载Llama-3.2-1B-Instruct模型? 2. 如何调整生成参数(如temperature、top_p)以改变模型输出的创造性和多样性? 3. 使用Hugging Face模型时,如何利用pipeline简化推理代码? 4. 对于同一个模型,如何只使用CPU进行推理?需要注意什么? 5. 如何将模型生成的响应格式化为纯文本(去除特殊token和提示部分)?</think>要在Python中运行`unsloth/Llama-3.2-1B-Instruct`的safetensors模型(使用GPU),需通过Hugging Face的`transformers`库实现。以下是完整步骤: ### 步骤1:安装依赖 ```bash pip install transformers accelerate torch safetensors ``` ### 步骤2:Python运行代码 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # 加载模型和分词器 model_id = "unsloth/Llama-3.2-1B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", # 自动使用GPU torch_dtype=torch.float16 # 半精度节省显存 ) # 构建对话格式 messages = [ {"role": "system", "content": "你是有用的助手"}, {"role": "user", "content": "解释量子计算的基本原理"} ] # 生成文本 input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9 ) # 解码并打印结果 print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### 关键说明: 1. **设备配置**: - `device_map="auto"`:自动使用所有可用GPU资源 - 显存不足时添加`load_in_4bit=True`(需安装`bitsandbytes`) 2. **性能优化**: - `torch_dtype=torch.float16`:半精度推理 - 批处理时使用`padding=True`和`pad_token_id` 3. **生成参数**: - `max_new_tokens`:控制生成长度 - `temperature`:调整输出随机性 - `top_p`:核采样(nucleus sampling)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值