对于目前很火的Deepseek,最近有准备LLM面试的学员问需要重点掌握哪些东西,给大家的建议是这块最重要的是deepseek v3和r1的技术报告,建议大家去精读一下,其中MLA注意力,MTP,GRPO,冷启动数据,这些是重点。
基于清华大学 KVCache.AI 团队与趋境科技合作开源的 KTransformers 项目,部署 DeepSeek-R1 671B 满血版的具体步骤如下(关键技术与实现细节均来自官方披露信息):
01
硬件配置要求
显卡:单张 NVIDIA RTX 4090 D(24GB 显存)即可满足需求,Q4_K_M 量化版仅需 14GB 显存。
内存:标准 DDR5-4800 服务器内存,推荐 382GB 以上。
CPU:支持双路 Intel Xeon Gold 6454S(共 64 核)以发挥 NUMA 架构优势。
02
核心技术原理
1.异构计算划分策略
将 MoE 架构中计算强度低的稀疏路由专家层(Routed Expert)卸载到 CPU/DRAM 处理,利用 llamafile 提供高速 CPU 算子。
保留计算强度高的稠密层(MLA 注意力机制、共享专家层)在 GPU 处理,采用 Marlin 算子加速量化矩阵计算,相比传统方法提速 3.87 倍。
划分依据:通过计算强度(MLA > Shared Expert > Routed Expert)动态分配,直到 GPU 显存占满。
2.KV 缓存优化
重构 MLA(Multi-Layered Attention)算子的权重融合技术,将 q_proj 和 out_proj 权重直接融合,减少 KV 缓存体积达 70%。
采用 CUDA Graph 加速技术,将多个 GPU 操作合并为单个内核调用,降低调度开销。
03
部署流程
1.环境准备
安装 KTransformers 框架(GitHub 地址见),兼容 HuggingFace Transformers API。
配置双 NUMA 节点内存绑定,确保 CPU 多线程负载均衡。
2.模型加载与量化
下载 DeepSeek-R1 671B 的 Q4_K_M 量化版本(约 382GB 存储需求)。
通过 YAML 模板注入框架选择量化策略,例如:
3.性能调优
预处理加速:启用 AMX 指令集优化,双路 64 核 CPU 可达到 286 tokens/s。
生成加速:选择"6 专家激活"模式(仅 V0.3+支持),生成速度提升至 14 tokens/s。
内存管理:采用 NUMA 感知的内存分配策略,避免跨节点访问延迟。
04
关键性能对比
05
扩展能力
多平台支持:兼容 Windows/Linux 系统,提供 ChatGPT 式 Web 界面降低交互门槛。
模型兼容性:可扩展支持其他 MoE 架构模型(如 Mixtral 8x22B),通过替换 YAML 模板快速适配。
动态量化升级:未来计划支持 1.5-2.5 位超低位量化,进一步降低内存需求至 200GB 以下。
该方案通过计算卸载+异构加速+量化压缩三位一体的创新,首次实现千亿级模型在消费级硬件的全参数运行,为科研机构和小型团队提供了低成本探索大模型本质的可能性。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈