场景如打开电商app想买东西,经过首页→广告页→详情页→购物车→支付,五个步骤。这五个步骤缺一不可,因此存在前后关系。即必须完成前一步,才能继续完成后一步。
非互联网企业专属,只是互联网企业方便做埋点。传统门店的:进店→选货→试穿→谈价→成交;传统会议的:签到→听讲→互动→谈价→成交 都是漏斗模型。
漏斗分析要注意,从完成第一个环节开始统计。
这一点涉及统计准确性。还以电商APP举例,实际上用户行为不会首页→广告页→详情页→购物车→支付一竿子捅到底,而是相当随性的。比如先点击广告页以后退出去看看别的,回头想想还是这个商品好,于是又搜索了商品名称,转回来商品详情页……中间发生很多操作。
此时统计漏斗数据的时候,需要按照指定好的步骤进行统计,完成上一个步骤,才统计下一个步骤行为(如下图)
当然,这样会漏掉一些中间加入流程的人。漏斗分析法不解决这种中间加入的问题,需要另一个方法:用户行为地图来解决。
漏斗如何分析?
有了漏斗以后,可以从多个角度进行观察,发现问题。
比如,和相似的商品比较,发现可改善的环节(如下图):
自身与自身相比,观察自己经营的走势(如下图) :
总之,通过优化做的不好的环节,提升整体转化率,是最终目标。
漏斗分析的不足之处
从本质上看,漏斗分析是一种:知其然,不知其所以然的方法。通过漏斗图,可以很轻松的看到问题发生在哪里,但是无法解释:为什么问题发生在这里。特别是问题发生在漏斗的末端的时候。
举个简单的例子,看下边两组数据(如下图):
很明显,商品A是因为广告页转化低,那换个广告即可解决问题。但商品B呢?每一步看起来都很正常,但是用户就是不买单,为什么?用户在等优惠活动?用户跑去别的平台比价去了?如果用户不喜欢商品的图片、价格、设计,为啥不早跳出?
总之,种种问题,不是单靠漏斗分析能回答清楚的。所以,世界上没有完美的分析方法,每种方法都有自己的适用范围,在做分析的时候,要选择合适的方法。