计算机视觉算法实战——疲劳检测(主页有源码)

   ✨个人主页欢迎您的访问 ✨期待您的三连 ✨

 ✨个人主页欢迎您的访问 ✨期待您的三连 ✨

  ✨个人主页欢迎您的访问 ✨期待您的三连✨

1. 疲劳检测领域简介

疲劳检测是计算机视觉与人工智能交叉领域的重要研究方向,旨在通过分析人体生理或行为特征(如面部表情、眼部活动、头部姿态等)实时判断个体的疲劳状态。其在交通安全、工业生产和医疗健康等领域具有广泛应用。例如,驾驶员疲劳是交通事故的主要诱因之一,实时检测驾驶员的闭眼频率或打哈欠动作可显著降低事故风险。

疲劳检测的核心任务包括:

  • 眼部状态识别:检测闭眼时长和眨眼频率(PERCLOS指标)。

  • 面部动作分析:捕捉打哈欠、点头等疲劳特征。

  • 多模态融合:结合头部姿态、心率、方向盘操作等数据提升准确性。

2. 当前主流算法

2.1 传统方法

  • Haar特征 + AdaBoost分类器:通过级联分类器检测眼部、嘴部区域,计算闭合时间。

  • HOG + SVM:提取方向梯度直方图特征,训练支持向量机分类。

  • Dlib人脸关键点检测:基于68点人脸关键点定位,计算眼睛纵横比(EAR)和嘴巴张开度。

2.2 深度学习方法

  • CNN(卷积神经网络):如ResNet、MobileNet,直接端到端分类疲劳状态。

  • 时序模型(LSTM/GRU):结合连续帧的时序信息,分析行为模式。

  • YOLO系列:实时检测多目标(如眼睛、嘴巴、头部姿态)。

  • Transformer:通过自注意力机制捕捉长距离依赖关系。

2.3 算法性能对比

综合实时性与精度,基于多任务学习的混合模型(如YOLOv8 + LSTM)表现最佳。例如,在公开数据集上,此类模型的准确率可达95%以上,推理速度达到30 FPS。

3. 最佳算法:YOLOv8与LSTM融合模型

3.1 核心原理

  • YOLOv8:最新的YOLO版本,采用锚点自由(Anchor-Free)机制和动态卷积,提升小目标(如眼睛)检测精度。

  • LSTM(长短期记忆网络):处理时序数据,捕捉疲劳行为的连续性(如连续闭眼超过2秒)。

工作流程

  1. 目标检测:YOLOv8实时检测视频帧中的眼睛、嘴巴、头部区域。

  2. 特征提取:计算眼睛纵横比(EAR)、嘴巴张开度(MAR)及头部姿态角。

  3. 时序建模:LSTM接收连续10帧的特征序列,输出疲劳概率。

4. 数据集与下载链接

4.1 常用数据集

  1. NVIDIA DRIVER Drowsiness Detection (DDAD)

    • 内容:包含驾驶场景下的多模态数据(视频、心率、方向盘操作)。

    • 链接DDAD Dataset

  2. UCLA Drowsy Driver Dataset

    • 内容:30名受试者的红外摄像头视频,标注闭眼、打哈欠等动作。

    • 链接UCLA Dataset

  3. YawDD(Yawning Detection Dataset)

    • 内容:聚焦打哈欠检测,包含多种光照条件下的视频数据。

    • 链接YawDD Dataset

5. 代码实现(基于PyTorch和OpenCV)

5.1 环境准备

pip install torch opencv-python ultralytics numpy

5.2 完整代码

import cv2
import numpy as np
import torch
from ultralytics import YOLO
from torchvision import transforms
from torch.nn import LSTM

# 初始化YOLOv8模型
model_yolo = YOLO('yolov8n-face.pt')  # 预训练的人脸检测模型

# 定义LSTM时序模型
class FatigueLSTM(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.lstm = torch.nn.LSTM(input_size=3, hidden_size=64, batch_first=True)
        self.fc = torch.nn.Linear(64, 2)  # 输出疲劳/非疲劳

    def forward(self, x):
        out, _ = self.lstm(x)
        return self.fc(out[:, -1, :])

model_lstm = FatigueLSTM()
model_lstm.load_state_dict(torch.load('fatigue_lstm.pth'))

# 定义疲劳判断参数
EAR_THRESHOLD = 0.25  # 眼睛纵横比阈值
SEQ_LENGTH = 10        # 时序序列长度
sequence = []

# 实时检测
cap = cv2.VideoCapture(0)
while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    # YOLOv8检测人脸关键点
    results = model_yolo(frame)
    boxes = results[0].boxes.xyxy.cpu().numpy()
    if len(boxes) == 0:
        continue

    # 提取眼部区域
    x1, y1, x2, y2 = boxes[0].astype(int)
    face_roi = frame[y1:y2, x1:x2]
    left_eye = face_roi[35:55, 15:45]  # 示例坐标,需根据实际关键点调整
    right_eye = face_roi[35:55, 65:95]

    # 计算眼睛纵横比(EAR)
    def calculate_ear(eye):
        # 简化计算:高度与宽度的比值
        return (eye[3] - eye[1]) / (eye[2] - eye[0] + 1e-6)
    
    ear_left = calculate_ear(left_eye)
    ear_right = calculate_ear(right_eye)
    avg_ear = (ear_left + ear_right) / 2

    # 更新时序序列
    sequence.append([avg_ear, 0, 0])  # 示例特征,可加入嘴巴张开度等
    if len(sequence) > SEQ_LENGTH:
        sequence.pop(0)

    # LSTM预测疲劳状态
    if len(sequence) == SEQ_LENGTH:
        inputs = torch.tensor([sequence], dtype=torch.float32)
        outputs = model_lstm(inputs)
        pred = torch.argmax(outputs).item()
        fatigue_status = "Fatigue" if pred == 1 else "Normal"
        cv2.putText(frame, f"Status: {fatigue_status}", (10, 30), 
                    cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

    # 显示结果
    cv2.imshow('Fatigue Detection', frame)
    if cv2.waitKey(1) == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

6. 优秀论文推荐

  1. 《Real-Time Driver Drowsiness Detection Using Deep Learning》

    • 简介:提出基于CNN-LSTM的混合模型,实现高精度实时检测。

    • 链接IEEE Xplore

  2. 《YOLOv8: The Latest Evolution of Real-Time Object Detection》

    • 简介:YOLOv8的技术细节与性能优化策略。

    • 链接arXiv:2304.12346

7. 具体应用场景

  1. 智能驾驶系统:特斯拉、蔚来等车企的驾驶员状态监控(DMS)。

  2. 工业安全:监控工厂操作员疲劳状态,触发警报或停机保护。

  3. 医疗护理:长期卧床患者的睡眠质量监测。

8. 未来研究方向

  1. 多模态数据融合:结合脑电(EEG)、心率等生理信号提升准确性。

  2. 轻量化部署:优化模型以适应边缘设备(如车载芯片、无人机)。

  3. 无监督学习:减少对标注数据的依赖,利用对比学习挖掘潜在特征。

  4. 跨场景泛化:解决光照变化、遮挡等复杂环境下的鲁棒性问题。

结语

疲劳检测技术正在从实验室走向实际应用,其发展不仅依赖算法创新,还需与硬件、行业场景深度结合。随着Transformer、神经架构搜索(NAS)等技术的突破,未来的疲劳检测系统将更智能、更可靠,为人类安全保驾护航。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喵了个AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值