0-1背包问题

问题描述:

有容积为w的背包,有n个物品,并且已知每个物品的体积和价值,找到一种方法将若干物品放入背包,使背包中物品的总价值最大。输入物品件数n、背包容积w、每个物品的体积和价值,输出可以装入背包中的物品的最大总价值。

输入:

在第一行输入物品件数n和背包容积w,在下一行输入n个整数表示n个物品的体积,在第三行输入n个整数表示n个物品的价值。

输出:

在一行输出可以得到的背包中物品的最大总价值。

样例输入:

4 8
2 4 4 3
3 4 3 6

样例输出:

10

分析:

背包问题是动态规划的典型问题,什么是动态规划?

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。 动态规划的要旨是不要重复计算自己,换句话说,将已经计算的结果存储起来,以日后需要的时候不用再重复调用。

对于动态规划,将以下五步搞清楚至关重要:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

我们再来看0-1背包问题的特点:

它的特点是:每种物品只有一件,可以选择放与不放。用比较抽象的语言表示是,有n件物品,每件物品的重量是w,价值为v,背包的容量为W。 

根据动态规划的思想,我们可以把问题拆成一个一个子集来解决。试想,是不是可以考虑拆成背包重量为[1, W]的子集呢(思路1)?换成大白话说,就是是不是可以考虑为如果背包重量为1时,能达到的最大价值是多少?如果背包重量为2时,能达到的最大价值是多少?如果背包重量为3呢?

有了上面的考虑方法后,我们还应该想想是不是可以从另一个角度再考虑一下?

另一个考虑问题的角度是,“将前i件物品放入容量为v的背包中”(思路2)。如果只考虑前i件物品,那么,根据动态规划又可以转化为“将前i - 1件物品放入背包中”。第i件物品的策略可以是放或不放。如果不放,问题则转化为“将前i - 1件物品放入容量为v的背包中”;如果放,问题转化为“前i-1件物品放入剩下的容量为v-w[i]的背包中”。

结合动态规划的五部曲以及本题的特点进行分析:

1. 确定dp数组以及下标的含义

 对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

     2.  确定递推公式

 

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

 3. 初始化dp数组

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

再看放入物体0的初始化情况,由于物体0的体积(即重量)是2,当 j < 2时,背包放不下物体0,故初始化为0,当大于等于2时,由于物体0时第一个物体,没有上一个物体,故初始化为物体0的价值,即为3。 

4. 确定遍历顺序

对于0-1背包问题,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,因此先遍历背包再遍历物体,与先遍历物体再遍历背包均可以!

5. 举例推导dp数组

如图所示:

最终结果为dp[3][8]。

至此,背包问题就解决了。相比而言,这是比较简单的动态规划问题,因为状态转移的推导逻辑比较容易想到,基本上你明确了dp数组的定义,就可以理所当然地确定状态转移了。

代码实现:

#include<iostream>
#include<vector>
using namespace std;
int main() {
    int n ,w;
    cin >> n >> w;
    vector<int> value(n); // 物体的价值
    vector<int> weight(n);// 物体的重量
    vector<vector<int>> dp(n,vector<int>(w+1));
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    for (int i = 0; i <= w; i++) {
        if (i >= weight[0]) dp[0][i] = value[0];
    }
    for (int i = 1; i < n; i++) {
        for (int j = 0; j <= w; j++) {
            if (j < weight[i]) dp[i][j] = dp[i-1][j];
            else {
                dp[i][j] = max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
            }
        }
    }
    cout << dp[n-1][w];
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-Gaojs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值