剪格子(Python)

这是一个编程问题,要求判断一个m×n的整数矩阵是否能被分割成两个部分,其数字和相等。给定一个3x3的例子,任务是找到包含左上角格子且和为总和一半的最小区域。通过深度优先搜索策略检查所有可能的分割。若能找到符合条件的分割,返回包含的最小格子数,否则返回0。
摘要由CSDN通过智能技术生成

题目描述

如下图所示,3 x 3 的格子中填写了一些整数。

我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是 60。

本题的要求就是请你编程判定:对给定的 m×n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。

如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。

如果无法分割,则输出 0。

输入描述

输入描述

程序先读入两个整数 m,n 用空格分割 (m,n<10),表示表格的宽度和高度。

接下来是 n 行,每行 m 个正整数,用空格分开。每个整数不大于 10^4。

输出描述

在所有解中,包含左上角的分割区可能包含的最小的格子数目。

输入输出样例

示例

输入

3 3
10 1 52
20 30 1
1 2 3

输出

3

运行限制

  • 最大运行时间:5s
  • 最大运行内存: 64M
    def pd(x,y):#判断是否超范围
      if 0<=x<=n-1 and 0<=y<=m-1:return True
      return False
    def check(c,q):#检查所到格子的数之和是否符合所有格子总和的一半
      global ans,sum1
      if 2*q>sum1:return False
      elif 2*q==sum1:
        if vis[0][0]==1 and ans>c:#是否包含左上角的格子
          ans=c
          return False
      return True
    def dfs(x,y,c,q):#坐标,方块数,和
      d=[(0,1),(0,-1),(-1,0),(1,0)]#向下,向上,向左,向右
      global ans,sum1
      if not check(c,q):return
      vis[x][y]=1
      for i in range(4):
        dx=x+d[i][0];dy=y+d[i][1]
        if pd(dx,dy) and vis[dx][dy]==0:dfs(dx,dy,c+1,q+s[x][y])
      vis[x][y]=0
    m,n=map(int,input().split())
    s=[]
    sum1=0#所有格子数目总和
    for i in range(n):
      t=list(map(int,input().split()))
      sum1+=sum(t)
      s.append(t)
    vis=[[0]*m for i in range(n)]#记录该位置是否被使用
    ans=10000
    dfs(0,0,0,0)
    print(ans)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【cc1】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值