【2024大模型论文】大模型可解释性论文汇总:19篇精选研究,附预印版链接

9月24日,CCF-B类自然语言处理领域知名会议2024年自然语言处理实证方法会议(EMNLP 2024)公布了主会及Findings录用的论文清单。会议将于11月12日至16日在美国迈阿密举行。完整清单见

https://2024.emnlp.org/program/accepted_main_conference/
https://2024.emnlp.org/program/accepted_findings/
https://2024.emnlp.org/program/demo/

https://2024.emnlp.org/program/industry/

本文整理了(多模态)大语言模型解释性相关工作,共19篇,涵盖模型机制解释性、模型内部概念解释、模型解释评估、模型解释在下游任务中的应用等主题。

# 大模型机制解释性

1. [机制可解释、竞争神经元分析;Main**] Interpreting Arithmetic Mechanism in Large Language Models through Comparative Neuron Analysis**

Zeping Yu, Sophia Ananiadou
英国曼彻斯特大学
https://arxiv.org/pdf/2409.14144

2. [机制可解释、神经元定位**;Main****] Interpreting Context Look-ups in Transformers: Investigating Attention-MLP Interactions**

Clement Neo, Shay B Cohen, Fazl Barez
Apart Research,英国爱丁堡大学,英国牛津大学,新加坡南洋理工大学
https://arxiv.org/pdf/2402.15055

3. [多模态、领域神经元定位;Main**] MMNeuron: Discovering Neuron-Level Domain-Specific Interpretation in Multimodal Large Language Model**

Jiahao Huo, Yibo Yan, Boren Hu, Yutao Yue, Xuming Hu
香港科技大学,同济大学
https://arxiv.org/pdf/2406.11193

4. [机制可解释、信息流;Main**] Information Flow Routes: Automatically Interpreting Language Models at Scale**
Javier Ferrando, Elena Voita
Meta AI
https://arxiv.org/pdf/2403.00824

5. [机制可解释、回路分**;Main****] Towards Interpretable Sequence Continuation: Analyzing Shared Circuits in Large Language Models**
Michael Lan, Philip Torr, Fazl Barez
Apart Research,美国哈佛大学
https://arxiv.org/pdf/2311.04131

6. [LLM安全机制解释、隐藏状态分析; Findings] How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States
Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, Yongbin Li
阿里巴巴,清华大学
https://arxiv.org/pdf/2406.05644

# 大模型概念解释

7. [语言模型解释、变分贝叶斯框架;Findings**] Variational Language Concepts for Interpreting Pretrained Language Models**

Hengyi Wang, Zhiqing Hong, Shiwei Tan, Desheng Zhang, Hao Wang
美国罗格斯大学
https://arxiv.org/pdf/2410.03964

8. **[**语言模型解释、随机路径积分;Findings] Explaining Language Models via Randomized Path-Integration
Oren Barkan, Yehonatan Elisha, Yonatan toib, Jonathan Weill, Noam Koenigstein
以色列开放大学,以色列特拉维夫大学

# 大模型解释评估

9. [人类与人工智能决策、解释评估;Findings**] On Evaluating Explanation Utility for Human-AI Decision Making in NLP**

Fateme Hashemi Chaleshtori, Atreya Ghosal, Alexander Gill, Purbid Bambroo, Ana Marasovic

美国犹他大学
https://arxiv.org/pdf/2407.03545

10. [基于概念的解释评估;Main] Evaluating Readability and Faithfulness of Concept-based Explanations
Meng Li, Haoran Jin, Ruixuan Huang, Zhihao Xu, Defu Lian, Zijia Lin, Di Zhang, Xiting Wang
中国人民大学,中国科学技术大学,快手
https://arxiv.org/pdf/2404.18533

11. [解释一致性评估;Findings] AXCEL: Automated eXplainable Consistency Evaluation using LLMs
P Aditya Sreekar, Sahil Verma, Suransh Chopra, Abhishek Persad, Sarik Ghazarian, Narayanan Sadagopan
亚马逊
https://arxiv.org/pdf/2409.16984

12. [QA任务的 LLMs解释数据集;Main] XplainLLM: A Knowledge-Augmented Dataset for Reliable Grounded Explanations in LLMs
Zichen Chen, Jianda Chen, Ambuj Singh, Misha Sra
美国加利福尼亚大学圣塔芭芭拉分校,新加坡南洋理工大学
https://arxiv.org/pdf/2311.08614

# 模型解释相关应用

13. [可解释指导知识编辑;Main] Interpretability-based Tailored Knowledge Editing in Transformers
Yihuai Hong, Aldo Lipani
华南理工大学,英国伦敦大学
https://arxiv.org/pdf/2408.02181

14. [可解释指导分类器消除偏见;Main] BiasWipe: Mitigating Unintended Bias in Text Classifiers through Model Interpretability
Mamta Mamta, Rishikant Chigrupaatii, Asif Ekbal

印度理工学院巴特那校区

15. [NLI 任务的解释、利用 LLMs进行定理证明;Main] Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving
XIN QUAN, Marco Valentino, Louise A. Dennis, Andre Freitas

英国曼彻斯特大学,瑞士 Idiap 研究所
https://arxiv.org/pdf/2405.01379

16. [模型预测的概念解释;Main**] Latent Concept-based Explanation of NLP Models**
Xuemin Yu, Fahim Dalvi, Nadir Durrani, Marzia Nouri, Hassan Sajjad
加拿大达尔豪斯大学,卡塔尔哈马德·本·哈利法大学
https://arxiv.org/pdf/2404.12545

17. [图像分类任务的自然语言解释;Findings] Faithful and Plausible Natural Language Explanations for Image Classification: A Pipeline Approach
Adam Wojciechowski, Mateusz Lango, Ondrej Dusek
波兰波兹南科技大学,捷克查尔斯大学,三星人工智能中心
https://arxiv.org/pdf/2407.20899

# 大模型解释性工作综述

18. [近年可解释研究的分析;Main] From Insights to Actions: The Impact of Interpretability and Analysis Research on NLP
Marius Mosbach, Vagrant Gautam, Tomás Vergara Browne, Dietrich Klakow, Mor Geva Mila
加拿大魁北克人工智能研究所,加拿大麦吉尔大学,德国萨尔大学,智利天主教大学等
https://arxiv.org/pdf/2406.12618

19. [大语言模型知识机制; Findings] Knowledge Mechanisms in Large Language Models: A Survey and Perspective
Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao, Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang

浙江大学,新加坡国立大学,美国加州大学洛杉矶分校,阿里巴巴
https://arxiv.org/pdf/2407.15017

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值