如何给本地部署的 DeepSeek-R1投喂数据

随着人工智能技术的飞速发展,越来越多的人开始探索如何利用 AI 工具提升工作效率和个人知识管理水平。在众多开源AI模型中,DeepSeek-R1 凭借其强大的本地部署能力和多功能性脱颖而出。结合 AnythingLLM 这一功能强大的文档处理工具,我们可以轻松搭建一个属于自己的个性化 AI 知识管理系统。

一、什么是 DeepSeek-R1?

DeepSeek-R1 是一款基于深度学习的开源 AI 模型,默认支持文本生成、对话交互等多种任务。与依赖云服务的大模型相比,DeepSeek-R1 具有以下特点:

  • 开源免费:无需额外付费,适合个人用户和开发者使用。

  • 支持本地运行:可以在自己的设备上部署,避免了网络依赖和数据隐私问题。

  • 低延迟高效率:由于在本地运行,响应速度快且资源占用相对较低。

  • 易于二次开发:具备灵活的接口,方便开发者进行定制化开发。

二、为什么选择 AnythingLLM?

AnythingLLM 是一款功能全面的 AI 工具,支持多种文档格式(如PDF、Word、Markdown等)的上传和解析,并能与 AI 模型无缝对接。以下是选择 AnythingLLM 的理由:

  • 多格式文档支持:兼容常见文档类型,满足多样化需求。

  • 自动解析与整理:AI能够提取关键信息并生成摘要,简化文档管理流程。

  • 多种交互模式:支持阅读、总结、分析等多种功能,增强用户体验。

  • 本地部署友好:适合在自己的设备上运行,保障数据安全。

三、本地部署 DeepSeek-R1 的步骤

为了顺利运行 DeepSeek-R1,我们需要借助 Ollama 工具进行本地部署。具体操作请参考以下文章:

标题:如何在macOS上本地部署DeepSeek

链接:https://www.toutiao.com/article/7466345770363486735/

完成 DeepSeek 部署后,通过命令 ollama pull nomic-embed-text 将 nomic-embed-text 模型部署到 Ollama 中。该模型主要用于将文本嵌入到高维向量空间,便于进行语义分析和检索。

图片

四、配置 AnythingLLM

在安装并确保 AnythingLLM 与 DeepSeek-R1 兼容后,按照以下步骤进行配置:

  1. 下载与安装:从官方网站下载合适的版本,并完成安装。

图片

  1. 选择模型提供商:在设置界面中将 LLM 提供商设为 Ollama,同时指定使用 DeepSeek-R1作为具体模型。

图片

  1. 配置向量数据库:保持默认的 LanceDB,无需额外调整。

图片

  1. 嵌入引擎设置:将嵌入引擎提供商设为 Ollama,选择 nomic-embed-text 作为嵌入模型。

图片

五、“投喂”数据:知识文档的上传与管理

通过 AnythingLLM 上传和管理知识文档的具体步骤如下:

  1. 创建工作区:在软件内新建一个工作区,用于集中管理相关文档。

  2. 文件上传:点击“上传文件”按钮,选择要上传的 PDF、Word 或其他格式的文档,按照提示完成上传过程。

图片

图片

  1. 文档处理:对于 PDF 文件,AI会自动提取关键信息并生成摘要,Word 文件则可以按章节或段落进行拆分和整理。

六、与AI互动:基于 DeepSeek-R1 的知识查询

在完成数据准备工作后,即可通过以下方式与 AI 互动:

图片

七、总结

通过结合 DeepSeek-R1 和 AnythingLLM,我们能够搭建出一个高效且个性化的 AI 知识管理系统。虽然初期搭建可能需要一些时间和精力,但一旦系统运行起来,其带来的效率提升和便捷体验将远超预期。建议在实践中不断摸索和调整,找到最适合自己的配置和使用方式。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### DeepSeek-R1 7B 模型性能特点 DeepSeek-R1系列中的7B参数量版本继承了整体架构的优势,在推理能力和鲁棒性方面表现出色。此模型采用了多阶段训练策略,先通过监督微调(SFT),再利用强化学习(RL)优化,从而有效解决了早期仅依赖RL训练带来的可读性和语言一致性问题[^2]。 #### 推理能力增强 相比前序版本DeepSeek-R1-Zero, DeepSeek-R1 7B显著提升了逻辑推断水平。特别是在处理复杂语境下的问答、摘要生成等任务时,能够提供更加精准且连贯的回答。这得益于其独特的训练机制——即在正式进入强化学习环节之前进行了充分的预热准备,确保基础质量稳固后再追求更高层次的能力突破。 #### 多样化应用场景适配 针对不同领域的需求差异,该规模级别的LLM可以灵活调整输出风格以适应特定行业背景的要求。无论是科技资讯解析还是文学创作辅助,均能展现出良好的泛化特性。此外,由于具备较强的上下文理解力,因此对于涉及专业知识的任务同样适用,比如医学文献综述编写或是法律条文解释等工作场景下亦有不俗表现。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-7B") model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1-7B") input_text = "请描述一下太阳系内行星运行规律" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### 用户反馈概览 从实际应用情况来看,大多数用户体验良好,尤其赞赏于其强大的自然语言理解和生成功能。部分开发者指出,在某些极端情况下仍存在少量错误或不合理之处,但这并不影响整体正面评价。总体而言,这款模型凭借出色的稳定性和高效性赢得了广泛认可和支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值