随着人工智能技术的飞速发展,越来越多的人开始探索如何利用 AI 工具提升工作效率和个人知识管理水平。在众多开源AI模型中,DeepSeek-R1 凭借其强大的本地部署能力和多功能性脱颖而出。结合 AnythingLLM 这一功能强大的文档处理工具,我们可以轻松搭建一个属于自己的个性化 AI 知识管理系统。
一、什么是 DeepSeek-R1?
DeepSeek-R1 是一款基于深度学习的开源 AI 模型,默认支持文本生成、对话交互等多种任务。与依赖云服务的大模型相比,DeepSeek-R1 具有以下特点:
-
开源免费:无需额外付费,适合个人用户和开发者使用。
-
支持本地运行:可以在自己的设备上部署,避免了网络依赖和数据隐私问题。
-
低延迟高效率:由于在本地运行,响应速度快且资源占用相对较低。
-
易于二次开发:具备灵活的接口,方便开发者进行定制化开发。
二、为什么选择 AnythingLLM?
AnythingLLM 是一款功能全面的 AI 工具,支持多种文档格式(如PDF、Word、Markdown等)的上传和解析,并能与 AI 模型无缝对接。以下是选择 AnythingLLM 的理由:
-
多格式文档支持:兼容常见文档类型,满足多样化需求。
-
自动解析与整理:AI能够提取关键信息并生成摘要,简化文档管理流程。
-
多种交互模式:支持阅读、总结、分析等多种功能,增强用户体验。
-
本地部署友好:适合在自己的设备上运行,保障数据安全。
三、本地部署 DeepSeek-R1 的步骤
为了顺利运行 DeepSeek-R1,我们需要借助 Ollama 工具进行本地部署。具体操作请参考以下文章:
标题:如何在macOS上本地部署DeepSeek
链接:https://www.toutiao.com/article/7466345770363486735/
完成 DeepSeek 部署后,通过命令 ollama pull nomic-embed-text 将 nomic-embed-text 模型部署到 Ollama 中。该模型主要用于将文本嵌入到高维向量空间,便于进行语义分析和检索。
四、配置 AnythingLLM
在安装并确保 AnythingLLM 与 DeepSeek-R1 兼容后,按照以下步骤进行配置:
- 下载与安装:从官方网站下载合适的版本,并完成安装。
- 选择模型提供商:在设置界面中将 LLM 提供商设为 Ollama,同时指定使用 DeepSeek-R1作为具体模型。
- 配置向量数据库:保持默认的 LanceDB,无需额外调整。
- 嵌入引擎设置:将嵌入引擎提供商设为 Ollama,选择 nomic-embed-text 作为嵌入模型。
五、“投喂”数据:知识文档的上传与管理
通过 AnythingLLM 上传和管理知识文档的具体步骤如下:
-
创建工作区:在软件内新建一个工作区,用于集中管理相关文档。
-
文件上传:点击“上传文件”按钮,选择要上传的 PDF、Word 或其他格式的文档,按照提示完成上传过程。
- 文档处理:对于 PDF 文件,AI会自动提取关键信息并生成摘要,Word 文件则可以按章节或段落进行拆分和整理。
六、与AI互动:基于 DeepSeek-R1 的知识查询
在完成数据准备工作后,即可通过以下方式与 AI 互动:
七、总结
通过结合 DeepSeek-R1 和 AnythingLLM,我们能够搭建出一个高效且个性化的 AI 知识管理系统。虽然初期搭建可能需要一些时间和精力,但一旦系统运行起来,其带来的效率提升和便捷体验将远超预期。建议在实践中不断摸索和调整,找到最适合自己的配置和使用方式。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓