开源大模型应用项目:DeepSeek二次开发实战指南!

一个轻量级、支持全链路且易于二次开发的大模型应用项目 支持DeepSeek/Qwen2等大模模型

基于DeepSeek,快速开发应用,快速获得用户,收割这一波流量,已经有老外基于DeepSeek获得大量用户,中国程序员应该动起来,持续完善deepseek生态

这个项目 是一个非常有前景和实用性的一站式大模型应用开发项目,结合了多种先进技术来构建一个功能强大、用户友好的应用。以下是对这个项目的详细分析:

技术栈

  1. 前端技术:
  • Vue3:作为前端框架,Vue3 提供了更好的性能、更简洁的 API 和更强大的组合式 API,使得开发更加高效。

  • TypeScript:为 JavaScript 添加了类型系统,提高了代码的可读性和可维护性。

  • Vite 5:作为构建工具,Vite 提供了极快的开发服务器启动速度,优化了热模块替换(HMR)性能,使得开发体验更加流畅。

  1. 后端及大模型相关技术:
  • Dify、Ollama&Vllm:这些可能是特定的大模型或模型框架,用于处理自然语言任务、生成文本或进行问答。

  • Sanic:一个高性能的 Python Web 框架,适用于构建快速、可扩展的后端服务。

  • Text2SQL:将自然语言查询转换为 SQL 查询的技术,用于从数据库中检索数据。

  1. 数据可视化:
  • ECharts:一个强大的、可定制的数据可视化库,支持多种图表类型,适用于实现复杂的数据图形化展示。
  1. 文件处理:
  • 支持处理 CSV 文件,使得应用能够处理和分析表格数据,提供基于表格的问答功能。
  1. 第三方系统对接:
  • 方便对接第三方开源 RAG 系统和检索系统,扩展应用的知识库和问答能力。

功能特点

  1. 数据图形化问答:
  • 用户可以通过自然语言提问,应用将基于大模型处理用户的查询,并使用 ECharts 生成相应的图表来展示结果。
  1. 表格问答:
  • 应用能够处理 CSV 文件,用户可以上传表格数据,并通过自然语言提问来查询和分析数据。
  1. 通用知识问答:
  • 通过对接第三方开源 RAG 系统和检索系统,应用能够提供更广泛的通用知识问答服务。
  1. 现代 UI:
  • 使用 Vue3、TypeScript 和 Vite 5 打造的现代 UI,提供了良好的用户体验和可视化效果。

应用场景

  • 数据分析:用户可以通过上传 CSV 文件并提问来快速分析数据,无需编写复杂的 SQL 查询或使用数据分析工具。

  • 业务报表:应用可以生成各种业务报表,帮助用户更好地了解业务状况和趋势。

  • 知识问答:作为智能助手或客服系统,提供广泛的通用知识问答服务,提高用户满意度和效率。

展望

这个项目具有很大的潜力和应用价值,可以进一步扩展和优化以满足更多用户的需求。例如,可以添加更多类型的图表支持、增强数据处理能力、优化问答算法的准确性和效率等。同时,也可以考虑将应用部署到云端或移动设备上,以提供更广泛的使用场景和便捷性。

一个轻量级、支持全链路且易于二次开发的大模型应用项目 支持DeepSeek/Qwen2等大模模型

基于DeepSeek,快速开发应用,快速获得用户,收割这一波流量,已经有老外基于DeepSeek获得大量用户,中国程序员应该动起来,持续完善deepseek生态

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### DeepSeek 二次开发指南 #### 获取官方 API 文档 对于希望深入了解并进行二次开发的开发者来说,官方提供的API文档是一个不可或缺的资源。通过访问 [api-docs.deepseek.com](http://api-docs.deepseek.com),可以获取详细的接口说明和技术支持信息[^1]。 #### 利用现有教程快速上手 针对初学者或希望通过简单方法集成DeepSeek服务的情况,《DeepSeek接入微信公众号小白保姆教程》提供了一个很好的起点。这份材料不仅介绍了如何轻松地将DeepSeek嵌入到微信公众平台中,还强调了操作的安全性和注意事项[^2]。 #### 探索高级功能与应用案例 为了进一步挖掘DeepSeek的能力,在《离线也能用!DeepSeek-R1与本地化RAG联合,创建你的私有智能文档助手》一文中提到的功能如问题重写、查询扩展以及多轮对话上下文管理等特性值得特别关注。这些技术能够显著提升用户体验和服务质量[^3]。 ```python import deepseek_sdk as ds # 初始化客户端实例 client = ds.Client(api_key='your_api_key') # 使用问题重写功能优化用户输入 rewritten_query = client.rewrite_query(original_query="我想知道天气") print(f"原始问题是: {original_query}") print(f"经过改写的版本为: {rewritten_query}") # 执行增强后的搜索请求 response = client.search(query=rewritten_query) for result in response['results']: print(result['title'], ":", result['snippet']) ``` 此代码片段展示了如何利用Python调用DeepSeek的服务来改进用户的自然语言处理体验。它首先初始化了一个SDK客户端对象;接着演示了怎样使用`rewrite_query()`函数对原始问题进行预处理;最后执行了一次基于改进后的问题文本发起的搜索请求,并打印出了部分返回的结果摘要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值