正式开始分享微调相关的内容。我的想法是先快速过一下概念。然后快速上手实践。专有名词实在太多,需要各位认真阅读。
首先过一下本章的内容大纲。
-
前言
-
什么是模型微调?
-
模型微调的方式
-
大模型微调框架简介
-
专有名词
前言
之前我们一直强调,大语言模型(LLM)是概率生成系统。
能力边界
-
知识时效性:模型知识截止于训练数据时间点
-
推理局限性:本质是概率预测而非逻辑运算,复杂数学推理易出错(deepseek的架构有所不同)
-
专业领域盲区:缺乏垂直领域知识
-
幻觉现象:可能生成看似合理但实际错误的内容
之前一直讲解如何通过各种不同的知识库进行知识片段的检索,并通过提示词临时注入到大模型。从今天开始,我会写一写微调相关的文章。
什么是模型微调?
-
定义:在预训练大模型(如GPT、BERT)的基础上,使用特定领域或任务的数据进行额外训练,使模型适应新任务。
-
类比:类似“博士生在通识教育(预训练)后,专攻某个研究方向(微调)”。
微调适用场景
提升特定领域的专业性
场景特点:
高度专业化知识(如医学、法律、金融、科技等) ,通用大模型缺乏特定领域的知识和逻辑。
示例:
-
医疗报告生成(需准确使用医学术语和遵循临床病例格式)
-
法律合同审核(需识别合同条款的合规性和潜在风险)
-
财务报告解析:从PDF年报中提取营收、毛利率等结构化数据
-
科研论文评审:识别论文方法论部分的实验设计缺陷
让模型更符合企业需求
场景特点:
企业需要 AI 具备特定业务逻辑。
示例:
-
代码生成:蚂蚁的zone,美团的set,普通的模型能解决代码实现的问题,但是解决不了他们的zone和set的逻辑。比如阿里的代码员工,就是微调出来的。
-
业务流程:每个公司的业务流程不一样,每个节点的规则也不一样,如果我把项目流程微调到大模型
-
企业助手:比如各种手册的微调,然后就是一个企业的产品专家。
让模型更符合用户偏好
场景特点:
个性化
示例:
-
个性化的聊天:每个互联网产品都有自己的风格和用户特性(提示词能解决一部分)
-
内容创作助手:把小说的大纲,以及涉及的知识点微调进去,视频风格微调进去。
-
游戏NPC:游戏的设定等微调进去,NPC更具备灵活性。
让模型执行特定任务
场景特点:
标准化任务。
示例:
-
代码生成模型:用大量 Java、Python 代码训练 AI,让它更擅长某种编程语言。
-
表格理解: 微调模型解析扫描文档中的复杂表格结构,提取关键字段
数据安全 & 隐私问题
场景特点:
数据敏感。
示例:
-
银行数据:通过本地微调银行敏感数据,微调出具备风险能力的模型,让模型在不暴露的前提下具备风险识别能力。
-
医疗机构: 通过本地微调病人病例和诊断证明,专业数据,让模型具备辅助诊断能力。
资源受限场景
场景特点:
离线设备、专业设备、低显存。
示例:
-
设备故障诊断手册查询:微调轻量级模型快速解析设备编码与维修手册条目的对应关系
-
地下或海底:救护知识手段,生存技能
何时选择微调 vs. 其他方案?
场景 | 推荐方案 | 原因 |
---|---|---|
数据充足且领域差异大 | 全参数微调 | 最大化模型能力,适应性强 |
数据少但需快速适配 | LoRA/P-Tuning | 节省资源,避免过拟合 |
实时性要求高 | RAG(检索增强生成) | 动态注入最新知识,无需重新训练 |
输出需严格可控 | 提示工程+少量微调 | 通过模板约束输出,微调提升指令跟随能力 |
无标注数据 | 零样本/少样本提示 | 直接利用预训练知识,成本最低 |
模型微调的方式
1. 按训练目标分类
有监督微调(Supervised Fine-Tuning, SFT)
有监督微调是最常见的微调方式,适用于任务明确且具有标注数据的情况。通过使用人工标注的高质量数据对,模型能够学习特定任务所需的知识,从而在指定任务上提供准确的输出。
-
适用场景:数据充足且任务目标明确的情况,如文本分类、情感分析、命名实体识别等。
数据示例:
[
{
"instruction": "作为法律顾问,请回答以下问题:", // 可选指令模板
"input": "如果我在公司被解雇,我有权获得多少赔偿?",
"output": "根据《劳动合同法》第47条..."
},
{
"input": "签订购房合同后,开发商违约怎么办?",
"output": "您可以依据《合同法》要求..."
}
]
指令微调(Instruction Tuning)
指令微调旨在增强模型理解并执行不同指令的能力。通过指令-输出对的训练,使模型能够更好地遵循人类指令,提高其在多个任务上的泛化能力。
-
适用场景:需要提升模型的泛化性和指令理解能力,如聊天机器人、自动化任务、智能问答等。
数据示例:
[
{
"instruction": "用简单的语言解释量子力学。",
"input": "",//可省略
"output": "量子力学是研究微小粒子行为的科学..."
},
{
"instruction": "将以下句子翻译成法语。",
"input": "你好,今天天气不错。",
"output": "Bonjour, il fait beau aujourd'hui."
}
]
对齐方法(RLHF/DPO)
通过人类反馈(如 Reinforcement Learning from Human Feedback, RLHF)或直接偏好优化(Direct Preference Optimization, DPO),调整模型的输出,使其更符合人类价值观,提高安全性和一致性。
-
适用场景:需要控制模型输出的安全性或风格一致性,如客服机器人、儿童内容生成、内容审核等。
RLHF数据示例:
[
{
"prompt": "请写一篇关于气候变化的文章。",
"chosen": "气候变化是人类面临的最紧迫问题之一。科学研究表明...",
"rejected": "气候变化是媒体夸大的骗局,无需在意。",
"score": {"chosen": 5, "rejected": 1}, // 可选:标注人工评分
"reject_reason": "否定科学共识" // 可选:标注拒绝原因
}
]
rejected
回答应明确包含安全性或价值观问题(如危险步骤、歧视性内容),而非仅是质量差异
DPO数据示例:
[
{
"prompt": "如何回应‘女性不适合学理科’的观点?",
"chosen": "性别不应限制个人发展,许多女性科学家取得了卓越成就。",
"rejected": "女性的逻辑思维确实比男性差,这是客观事实。"
}
]
多任务学习
通过同时优化多个相关任务,提升模型的泛化能力,使其能够高效处理多种任务。通过损失函数动态调整不同任务的训练权重。
-
适用场景:任务之间存在关联性,适用于智能助理、语音识别、情感分析等任务。
数据示例:
[
{
"task": "情感分析",
"input": "这款手机的电池寿命太短了,太失望了。",
"output": "负面",
},
{
"task": "文本摘要",
"input": "近日,某科技公司发布了一款新产品...",
"output": "某科技公司发布新品"
}
]
2. 按参数更新策略分类
全参数微调(Full Fine-Tuning)
所有模型参数都参与训练,通常需要大量计算资源,适用于数据充足、计算资源充足的情况。
-
技术代表:常规SFT、RLHF(如ChatGPT的训练方式)。
数据示例:
{
"model": "GPT-3",
"trainable_parameters": "100%",
"dataset": "500K法律文本对",
"fine_tuning_method": "全参数微调"
}
部分冻结微调(Partial Fine-Tuning)
仅训练模型的部分层,如冻结底层参数,仅更新高层参数,降低计算开销。
-
技术代表:如BERT冻结前8层,仅训练后4层。
数据示例:
{
"model": "BERT",
"trainable_layers": "最后4层",
"frozen_layers": "前8层",
"fine_tuning_method": "部分冻结微调"
}
参数高效微调(PEFT)
仅更新少量的参数,通常通过结构化方法(如LoRA、Adapter)减少计算需求,并在低资源环境下实现高效微调。
-
技术代表:LoRA(低秩适配)、Adapter(插入小网络)。
LoRA的特点:
-
只调整部分参数(如低秩矩阵分解)。
-
降低计算和内存开销。
-
适合快速微调,尤其在资源受限时。
adapter的特点:
-
插入额外的 Adapter 层
-
降低计算和内存开销。(仅训练 Adapter 层和可独立存储 Adapter 层)
-
多任务学习、迁移学习。
最后比较下:
-
Adapter 插入额外的小型可训练模块,适用于多任务和迁移学习。
-
LoRA 通过低秩矩阵分解,调整少量关键参数,适用于快速微调。
-
如果需要在 多个任务间切换,Adapter 更合适;如果只是对单个任务高效微调,LoRA 更优。
大模型微调框架简介
在大模型微调领域,存在多种框架,每个框架都有其独特的优势和局限性。下面介绍几种常见的微调框架,包括示例代码和适用模型,帮助你根据任务需求选择最合适的框架。
1. Hugging Face Transformers
简介:
Hugging Face Transformers 业界标准NLP框架,提供200+预训练模型和全流程工具链,覆盖文本、图像、音频多模态任务。
核心优势:
-
全模态任务覆盖
-
预训练模型生态(社区模型库含30万+微调模型,并且覆盖覆盖 BERT、GPT、LLaMA、Whisper、ViT 等主流架构)
-
跨框架无缝衔接
-
开箱即用工具链
-
企业级部署支持
-
开发社区极为活跃
尽管 Hugging Face Transformers 在许多常见任务中表现优秀,但在超大规模模型的微调和训练中,可能会面临性能瓶颈和资源消耗过大的问题。
2. DeepSpeed
简介:
DeepSpeed是微软开发的分布式训练引擎,通过ZeRO优化实现百亿级模型全参数微调。
核心技术:
-
ZeRO 显著减少内存占用,提高分布式训练的效率
-
CPU Offloading 混合精度训练,加速训练过程并减少显存需求
-
自适应梯度累积
DeepSpeed适合大规模模型的训练,但使用门槛较高,需要深入理解框架的底层实现。
看了下官网,不是我能玩的。
3. LLaMA-Factory(本文使用的框架)
简介:
国产低代码微调框架,
看下官方的介绍。
4,Megatron-LM
简介:
NVIDIA千亿级模型训练框架,采用3D混合并行策略:
张量并行 + 流水并行 + 数据并行
性能指标:
-
175B模型训练:3072 A100(80G)
-
吞吐量:502 petaFLOPs
适用场景:
GPT-4级别模型预训练/微调。
据说坑不少,有不少人推荐。torchtitan。
如何选择微调框架?
不管是感官上,还是大模型得推荐上,对于我来说选择LLaMA-Factory是最好的选择。后续我基于这个做微调实现。
专有名词
过拟合(Overfitting)
是指模型在训练数据上表现得非常好,但在新数据或测试数据上的表现较差的现象。换句话说,模型过度学习了训练数据中的细节和噪声,以至于无法很好地泛化到未见过的数据。