n8n + mcp王炸组合:5个节点轻松搭建一个AI工作流

最近比较火热的AI话题离不开MCP,MCP协议为大模型提供了访问外部数据与工具的统一接口。各大云厂商腾讯云和阿里百炼也都纷纷接入了MCP。MCP就像给大模型接入了一个多功能插槽即插即用。对于大模型来说只有万能插座也无法发挥出价值,就像一个大功率的发动机只用来充个电,能把大模型的作用发挥到极致的还是需要通过AI工作流。今天为大家分享实际操作一下MCP加工作流的应用场景。

  什么是N8N

 n8n是一款开源工作流自动化平台。通过其强大的节点系统可以创建复杂的工作流,连接多个服务、数据库和工具。

图片

n8n目前在github上的排名是82.4K Star,是我目前用过的所有开源工具或框架中最高的一个。可想一下它的贡献有多大。

图片

咱们话不多说直接上手操作吧

  Go如何在本机安装部署n8n

第一步:安装 Docker

访问 Docker 官方网站,选择 Products > Docker Desktop:

notion image

在下载页面里,选择适合你系统的版本进行下载:

notion image

运行或拖拽(MacOS)下载后的文件,按提示将 Docker 安装在你的电脑上。

第二步:部署 n8n

notion image

在 Docker Desktop 中点击搜索框,输入 n8n。

notion image

选择 n8nio/n8n 这个官方镜像,点击右边的 Pull,下载该镜像。

如果在搜索与下载这一步出现错误,证明你的网络存在大陆特有的网络问题,你需要一些你懂的工具,本教程不会提供指导,请自行搜索。

notion image

在电脑任意位置创建一个目录,这个目录是用来存储 n8n 数据的,你可以自己随意找地方,起名字(非中文)。

notion image

回到 Docker,选择 Images,找到刚才下载的 n8nio/n8n 镜像,点击右边的三角图标。

notion image

首次运行时,Docker Desktop 会进入 Container(容器)创建界面。有两个部分需要修改:

1. Ports 的位置设置端口为 5678

 2. Volumes 的位置设置永久化存储:

在 Host path 中,找到我们刚才创建的那个目录。在 Container Path 中填入 /home/node/.n8n/

这一步的用途是,将 n8n 中用于存储文件、数据、凭证等的目录,映射到 Docker 之外。因为 Docker 是一种数据-程序分离的部署方案,如果你不这么做,下次快捷升级的时候,你 n8n 里的数据就会被清空。

填写好后,点击 run。

notion image

大约经过不到 1 分钟的初始化之后,你就会在 Logs 里看到类似 :

Editor is now accessible via:

 http://localhost:5678/

这样的日志,这个时候,你只要点击那个链接,或者是直接访问 

http://localhost:5678/ 应该就可以进入到 n8n 的安装界面了。

安装MCP n8n社区节点

进入后的页面非常简洁

图片

找到settings设置页面——community nodes——安装n8n nodes社区节点

图片

n8n的社区节点提供了很多npm安装包,根据需要填写n8n-nodes-mcp

图片

至此一些准备工作都已就绪,接下来就是简单的创建工作流的步骤

如何创建工作流

• 1. 起始节点:添加一个会话用于发送消息

• 2. AI agent:添加n8n支持的大模型,这里选择deepseek

• 3. 自动卸载/加载:应用后台运行时,通过卸载模型自动管理内存

• 推理设置:可自定义模型参数,包括系统提示、温度、BOS 令牌和聊天模板

• 实时性能指标:生成 AI 响应时,可查看每秒令牌数及每个令牌的毫秒数

  • 图片

    测试一下添加的大模型deepseek是否可以正确接收指令并且正常返回,不得不说n8n的页面做的很人性化,对话窗口会显示每个节点请求的日志信息可以帮助开发者直观的观察到每一个节点的运行情况。

  • 图片

    其实到了这一步跟大模型的交互工作流就创建好了,但我们更重要的是接入mcp,下面就是最重要的环节。

  • 图片

    图片

图片

回到AI agent对话框设置页面,定义一个提示词,选择根据用户输入的合适工具

图片

如果执行过程中出现mcp server无法连接的情况,可以通过docker日志面板查看一下错误日志:这边在配置秘钥的时候出现了错误

图片

修改一下秘钥的配置即可运行成功

图片


 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值