前段时间,分享了一个非常好用的视频总结工具——百度网盘和百度文库联合推出的「AI 笔记」。
它能自动根据视频内容,生成图文视频总结、表格总结、思维导图等。关键是带时间戳,能直接跳转到视频的位置。

但这个功能隐藏在百度网盘里,也就是说,它只能对百度网盘中的视频进行总结。
最近看豆包也推出了「视频总结」的功能:
-
只需发送抖音、小红书、B 站等平台上的视频链接,或上传本地视频,它就能一键总结视频内容。
-
还能一键提取视频文案。
-
甚至还能分析视频分镜、脚本、剪辑手法等。
非常实用的一项功能,一起来看看吧~
一、豆包「视频总结」入口
把豆包 APP 更新到最新版,打开豆包,点右上角的「+」-「创建新对话」:

下面的功能栏,往左滑,就能看到「视频总结」啦。

目前豆包的视频总结功能还在内测中,如果你更新到最新版豆包,依然没有找到,可以再多等几天。
ps:目前只在手机 APP 上可用,电脑版豆包和网页版豆包还没更新。
二、使用场景
1、视频总结
只需要把视频链接发给豆包,它就能一键总结视频的重点。
对于长视频,可以通过这种方式快速了解视频大概内容,从而来决定要不要花时间去看,节省时间。

2、视频总结(带时间戳)
你也可以把视频链接发给豆包,并加上一句“总结视频并标注对应的时间戳,方便定位”。
它就能在每个重点后面,标注上该部分对应的时间戳,方便我们快速定位到视频的位置。

3、提取视频逐字稿
把视频链接发给豆包,并加上一句“提取视频逐字稿”,它就能一键提取视频文案。
以往我们用其他工具来提取视频文案,经常要看广告,而且稍微长一点的视频,还提取不全。
那么可以试试豆包。
我试了一个自己发过的视频,文案 1000 多字,完整提取!

4、分析分镜和剪辑手法
把视频链接发给豆包,并加上一句“分析视频分镜和剪辑手法”,它就能一键分析。
想要做出爆款视频,分析、拆解爆款视频,是每个视频创作者经常要做的。
而现在可以借助豆包的这个新功能快速完成。
看了豆包对视频的分析和拆解,还是相当到位的!
它能分析出一些被自己忽略的部分,这点还是比较好的。

我觉得自己分析和拆解的能力不能丢,但用豆包作为查漏补缺,还是挺不错的。
三、写在最后
最后来总结一下豆包的「视频总结」功能吧:
-
视频总结:支持「多平台视频链接」和「本地视频」的一键总结
-
支持带时间戳的视频总结:视频链接 + “总结视频并标注对应的时间戳,方便定位”
-
视频文案提取:视频链接 + “提取视频逐字稿”
-
分析拆解视频:视频链接 + “分析视频分镜和剪辑手法”
-
你也可以根据自己需求,探索更多玩法
非常实用的一项功能,快去试试吧。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)





第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

5828

被折叠的 条评论
为什么被折叠?



