下载yolo以及转成onnx模型:https://github.com/ultralytics/ultralytics
(我转换onnx的命令:yolo export model=[自己的模型名字] format=onnx opset=10)
在以下网址查看onnx模型的结构:https://netron.app/
可以看到输入INPUTS是float32[1,3,640,640],它的输入张量形状为 tensor: float32[1, 3, 640, 640]
,其中的四个数字分别表示不同的维度。第一个数字 1
表示批次(batch)的大小。这表示模型一次可以处理的样本数量。在这种情况下,模型一次处理一个样本。第二个数字 3
表示通道(channel)的数量。对于彩色图像,通常有三个通道(红色、绿色、蓝色),分别对应 RGB 通道。每个通道包含图像的不同颜色信息。第三个数字 640
表示图像的高度(height)。这表示输入图像的垂直像素数量。第四个数字 640
表示图像的宽度(width)。这表示输入图像的水平像素数量。这里输入是一张640*640的图片。
输出OUTPUTS是float32[1,35,8400],表示它会输出一个大小为[1, 35, 8400]的浮点数张量。这个输出张量的维度表示了检测到的目标的数量、每个目标的预测参数以及网格单元的数量。输出张量的第一个维度1表示检测到的目标数量。每个目标由35个值组成,表示目标的类别、置信度、边界框的坐标及10个特定点的位置。最后一个维度8400表示输入图像被划分成的网格单元数量。
在Unity3d中导入官方自带的Barracuda包: Installing Barracuda | Barracuda | 1.0.4 (unity3d.com)
下面根据onnx的输出结构来获取结果:
一共有8400个数据,每个数据有35个channel。要取得8400个数据中置信度最高的数据,然后获取该数据其他channel的数据。
using System.Collections.Generic;
using UnityEngine;
using Unity.Barracuda;
using UnityEngine.UI;
using System.Linq;
public class Test : MonoBehaviour
{
public NNModel modelAsset;
private Model m_RuntimeModel;
private IWorker worker;
public Texture2D inputTex;
public Transform dotParent;
public GameObject dot;
public GameObject box;
private void Start()
{
m_RuntimeModel = ModelLoader.Load(modelAsset);
worker = WorkerFactory.CreateWorker(WorkerFactory.Type.ComputePrecompiled, m_RuntimeModel);
Predict();
}
public void Predict()
{
using Tensor inputTensor = new Tensor(inputTex, channels: 3);
worker.Execute(inputTensor);
Tensor outputTensor = worker.PeekOutput();
//get highest confidence
var classProbabilities = new List<float>();
for (var boxIndex = 0; boxIndex < outputTensor.width; boxIndex++)
{
float confidence = outputTensor[0, 0, boxIndex, 4];
classProbabilities.Add(confidence);
}
var maxIndex = classProbabilities.Any() ? classProbabilities.IndexOf(classProbabilities.Max()) : 0;
UnityEngine.Debug.Log("Highest confidence:" + outputTensor[0, 0, maxIndex, 4] + " and its index:" + maxIndex);
Vector2 boxCenter = new Vector2(outputTensor[0, 0, maxIndex, 0], outputTensor[0, 0, maxIndex, 1]);
Vector2 boxSize = new Vector2(outputTensor[0, 0, maxIndex, 2], outputTensor[0, 0, maxIndex, 3]);
CreateBox(boxCenter, boxSize);
for (int i = 5; i < outputTensor.channels; i += 3)
{
Vector2 pos = new Vector2(outputTensor[0, 0, maxIndex, i], outputTensor[0, 0, maxIndex, i + 1]);
CreateRedDot(i, pos);
}
}
//create red dots on specific position
void CreateRedDot(int boxIndex, Vector2 pos)
{
GameObject newDot = Instantiate(dot).gameObject;
newDot.transform.SetParent(dotParent);
newDot.GetComponent<RectTransform>().anchoredPosition = new Vector2(pos.x, -pos.y);
newDot.name = boxIndex.ToString();
newDot.SetActive(true);
}
void CreateBox(Vector2 pos, Vector2 size)
{
box.GetComponent<RectTransform>().anchoredPosition = new Vector2(pos.x, -pos.y);
box.GetComponent<RectTransform>().sizeDelta = size;
box.SetActive(true);
}
}
运行结果:(蓝色是检测手的边框,红点是自定义的点)