Pandas对缺失值的处理 Pandas使用这些函数处理缺失值:
●isnul和notnul:检测是否是空值,可用于d和series
●dropna: 丢弃、删除缺失值
■axis :删除行还是列,{0 or index', 1 or 'columns'}, default 0
■how:如果等于any则任何值为空都删除,如果等于all则所有值都为空才删除
■inplace :如果为True则修改当前df,否则返回新的df
●fllna:填充空值
■value:用于填充的值,可以是单个值,或者字典(key是列名,value是值)
. method :等于ffil使用前一一个不为空的值填充forword fill;等于bfill使用后-一个不为空的值填充backword fill
■axis :按行还是列填充,{0 or "index', 1 or 'columns'}
■inplace :如果为True则修改当前df,否则返回新的df
import pandas as pd
df=pd.read_excel(r'C:\Users\Ziyin\Desktop\Rainfall_data.xlsx')
df.isnull()#检测空值,TRUE为空
df["Temperature"].isnull()#检测某一列的空值
df.notnull()#与isnull相反,false为空
df.dropna(axis="columns",how="all",inplace=True)#删除全是空值的列
df.dropna(axis="index",how="all",inplace=True)#删除全是空值的行
df.fillna({"Precipitation":0},inplace=True)#空值填充,注意要加inplace
df.loc[:,"Precipitation"]=df["Precipitation"].fillna(0)#空值填充的第二种方法,loc函数
df.loc[:,"Precipitation"]=df["Precipitation"].fillna(method="ffill")#ffill是forward fill,即填充前面有效值
#最后导出excel中
df.to_excel("lujinming_clean.xlsx",index=False)#这里加大index=false是在导出的excel中不加入索引.还有就是加clean的后缀
setting with copy warning解决办法
import pandas as pd
df=pd.read_excel(r'C:\Users\Ziyin\Desktop\Rainfall_data.xlsx')
condition=df["Year"].str.startswith(2000)#只选择2000年的数据,
df.[condition]["siducha"]=df["Specific Humidity"]-df["Relative Humidity"]出现setting with copy warning
df.loc(condition,"siducha")=df["Specific Humidity"]-df["Relative Humidity"]#.loc方法
df_2020y=df[condition].copy()#复制一个dataframe
df_2020y["siducha"]=df["Specific Humidity"]-df["Relative Humidity"]
因为时间问题都只是简单听了一下,没有练习...