补给站最优花费问题(动态规划)
问题描述
小U计划进行一场从地点A到地点B的徒步旅行,旅行总共需要 M
天。为了在旅途中确保安全,小U每天都需要消耗一份食物。在路程中,小U会经过一些补给站,这些补给站分布在不同的天数上,且每个补给站的食物价格各不相同。
小U需要在这些补给站中购买食物,以确保每天都有足够的食物。现在她想知道,如何规划在不同补给站的购买策略,以使她能够花费最少的钱顺利完成这次旅行。
M
:总路程所需的天数。N
:路上补给站的数量。p
:每个补给站的描述,包含两个数字A
和B
,表示第A
天有一个补给站,并且该站每份食物的价格为B
元。
保证第0天一定有一个补给站,并且补给站是按顺序出现的。
测试样例
样例1:
输入:
m = 5 ,n = 4 ,p = [[0, 2], [1, 3], [2, 1], [3, 2]]
输出:7
样例2:
输入:
m = 6 ,n = 5 ,p = [[0, 1], [1, 5], [2, 2], [3, 4], [5, 1]]
输出:6
样例3:
输入:
m = 4 ,n = 3 ,p = [[0, 3], [2, 2], [3, 1]]
输出:9
public static int solution(int m, int n, int[][] p) {
// Edit your code here
// 初始化 dp 数组,表示到达每一天的最小花费
int[] dp = new int[m + 1];
// 将 dp 数组中的元素初始化为一个很大的数,表示初始状态为无穷大
for (int i = 0; i <= m; i++) {
dp[i] = Integer.MAX_VALUE;
}
// 第 0 天的花费为0
dp[0] = 0;
// 遍历每个补给站
for (int[] station : p) {
int day = station[0];
int cost = station[1];
// 更新从该天开始到最后一天的最小花费
for (int j = day; j <= m; j++) {
if (dp[day] != Integer.MAX_VALUE) { // 确保该天可达
dp[j] = Math.min(dp[j], dp[day] + (j - day) * cost);
}
}
}
return dp[m];
}
// 案例一
输入:m = 5 ,n = 4 ,p = [[0, 2], [1, 3], [2, 1], [3, 2]]
输出:7
// 第一次外循环
day = 0, cost =2
内循环 (dp = {0, max, max, max, max, max})
j = 0;(dp = {0, max, max, max, max, max});
j = 1; (dp = {0, 2, max, max, max, max});
j = 2; (dp = {0, 2, max, max, max, max});
…
// 第二次外循环
day = 1, cost = 3;
内循环(dp = {0, 2, 4, 6, 8, 10})
j = 1; (dp = {0, 2, 4, 6, 8, 10});
j = 2; (dp = {0, 2, 4, 6, 8, 10});
j = 3; (dp = {0, 2, 4, 6, 8, 10});
…
// 第三次外循环
day = 2, cost = 1
内循环(dp = {0, 2, 4, 6, 8, 10})
j = 2; (dp = {0, 2, 4, 6, 8, 10})
j = 3; (dp = {0, 2, 4, 5, 8, 10})
j = 4; (dp = {0, 2, 4, 5, 6, 10})
j = 5; (dp = {0, 2, 4, 5, 6, 7})
后面的过程就不给出了