原题:
Mathematical Practice
1000ms 65536K
描述:
Kamishirasawa Keine always says, "If you don't know what to do, why not give mathematical practice a try."
However, Cirno is way too much talented to work on simple problems. Therefore, you are now tasked to crack one.
We consider one operation on a set SS as selecting mm subsets of SS in order (You can select the same subset multiple times and the selected subset can be empty).
Now you need to figure out how many possible operations that the mm selected subsets are pairwise disjoint.
As the answer may get very large, you need to print the answer after modulo 998244353998244353.
输入:
The input contains one line with two integers nn and mm(1≤n,m≤109)(1≤n,m≤109), where nn is the size of set SS and mm is the number of subsets to be selected in one operation.
输出:
Print one integer, the number of possible operations above after modulo 998244353998244353.
(链接:https://acs.jxnu.edu.cn/problem/ICPCJX2020G)
翻译:
有关数学的练习
Kamishirasawa Keine总是说:“如果你不知道做什么,为什么不做道数学题。”
然而,Cirno太有才了,无法解决简单的问题。因此现在你被分派了一个任务:破译它。
我们考虑一个操作:在一个集合s中按顺序选出子集m(你可以选择相同的子集乘以倍数并被选择的子集可以为空)。
现在你需要计算出有多少种可能的操作并被选出的子集不相交。
因为答案数字可能非常大,你需要输出答案模998244353后的值。
输入:
输入包括一行,两个整数n和m(1<=n,m<=109),n是集合s的长度,m是一次操作中所选子集的数目。
输出:
输出一个整数,可能的操作次数模998244353后的数。