【工程记录】QwQ-32b 8bit量化部署教程(vLLM | 缓解复读)

写在前面

仅作个人学习记录用。本文记录QwQ-32b 8bit量化模型的部署的详细方法。

1. 环境配置

以下环境经测试无bug(Deepseek R1用这个环境也能直接跑):

gpu: V100(32GB) * 2
python 3.12
cuda 12.1
pytorch==2.5.1
modelscope==1.22.3
tqdm==4.67.1
transformers==4.48.2
vllm==0.7.1

注意,如果安装vllm时发生报错:

.......
Failed to build xformers
ERROR: Failed to build installable wheels for some pyproject.toml based projects (xformers)

这是由于xformers与pytorch版本不符导致的,如果使用本文环境,对应的xformers版本为v0.0.28.post3.。尽量通过下载whl文件(链接)的方式来安装xformers。

2. 下载QwQ-32b 8bit量化模型

不少人(包括我)在QwQ-32B模型的使用过程中遇到了无限生成、重复内容过多的问题。也有人反馈deepseek-r1-distill-qwen-32b和Qwen2.5-Max推理模式也会出现类似问题。

为避免这些问题,可以考虑部署Unsloth 团队修复了上述错误的模型。
在这里插入图片描述

从 ModelScope 下载模型

如果从你从 HuggingFace 下载比较慢,也可以从ModelScope【链接】中下载。

从ModelScope下载8bit量化的gguf文件可以通过命令行,代码如下:

modelscope download --model unsloth/QwQ-32B-GGUF QwQ-32B.Q8_0.gguf --local_dir ./dir

vLLM支持gguf 格式,但是在运行时仍然需要指定tokenizer,因此除了下载模型权重之外,还需要下载QwQ-32B的Tokenizer。tokenizer相关文件如下:

config.json
tokenizer_config.json
tokenizer.json

自行下载:https://huggingface.co/Qwen/QwQ-32B/tree/main

全部下载完成后,将MODEL_PATH统一改成你下载的模型所在的文件夹位置。

3. 使用vLLM本地推理

ChatGLM3-6b部署完毕,接下来可以运行Demo来验证是否部署成功。
本地调用代码如下:

from vllm import LLM, SamplingParams

if __name__ == '__main__':

    MODEL_PATH = "XXXX/QwQ-32B-unsloth/QwQ-32B.Q8_0.gguf"

    llm = LLM(
        model=MODEL_PATH,
        tokenizer= "XXXX/QwQ-32B-unsloth",
        tensor_parallel_size=4,  # 多GPU并行数(单GPU设为1)
        trust_remote_code=True,  # 允许自定义代码
        gpu_memory_utilization=0.7,  # GPU显存利用率
        dtype="float16",  # 量化精度(可选:float16/auto)
        max_model_len=10240
    )

    # 配置生成参数
    sampling_params = SamplingParams(
        temperature=0.6,
        top_p=0.9,
        repetition_penalty=1.1,
        max_tokens=2048
    )
    messages = ['xxxx']
    outputs = llm.generate(messages, sampling_params)

    # 输出结果
    for output in outputs:
        print(f"Response: {output.outputs[0].text}\n")

正常运行:
在这里插入图片描述

(其实还是会复读)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值