计算机视觉概述

图像识别实际目标—— 让计算机将语义概念相似的的图像划分为同一类别

传统图像识别技术

全局特征:原图片——向量空间映射——向量表示

全局特征提取:用全局的视觉底层特性统计量表述图像

  1. 颜色特征
  2. 形状特征
  3. 纹理特征

特征变换:提高特征表示性能

  1. 中心化
  2. 归一化

问题:全局特征丢掉了图像细节

局部特征:图像区块的向量

传统视觉任务面临的挑战—— 语义鸿沟现象 (图像的底层视觉特性和高层语义概念之间的鸿沟)

深度学习在图像领域的应用

  1. 图片检索
  2. 图片描述
  3. 图片着色
  4. 识别异常的肿瘤或者癌细胞

图像识别为什么使用深度学习:深度学习模仿人类的视觉系统

  1. 视感觉阶段-信息采集
  2. 视知觉阶段-信息认知

目标检测

  1. 分类
  2. 定位
  3. 目标检测

图像分割

图像分析任务

  1. 图像分类
  2. 目标定位
  3. 语义分割
  4. 实际分割

图像分割分类

  1. 语义分割
  2. 实例分割
  3. 全景分割

图像分割应用

  1. 自动驾驶
  2. 医学诊断

像素级图像生成任务

超分辨率:将低分辨率图像转换成高分辨率图像

分类

  • 单幅图像
  • 多帧视频
  • 有监督学习
  • 无监督学习
  • 特定应用领域

应用场景

  • 数字高清
  • 安防监控
  • 医学影像
  • 图像分析
  • 图像压缩
  • 视频复原

风格转换:图像到图像的翻译

图像修复:填补图像缺失的像素

图像上色:灰度图像2RGB彩色图像

分类

  • 全自动图像上色
  • 交互式图像上色

CNN

卷积层

  1. input image * kernel(卷积核) = feature map(特征映射层)
  2. feature maps * kernel = feature map
  3. feature maps * n kernel = n feature maps

注:*为卷积操作

池化层

通过下采样缩减feature map尺度。常用max pooling和average pooling

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值