安装环境
数据准备
查看支持的数据集和模型列出所有跟 InternLM 及 C-Eval 相关的配置
结果将会得到
3.启动评测 (10% A100 8GB 资源)
遇到错误解决方案
解决方案:
pip install protobuf
命令解析
python run.py --datasets ceval_gen \ --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \ # HuggingFace 模型路径 --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \ # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略) --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \ # 构建 tokenizer 的参数 --model-kwargs device_map='auto' trust_remote_code=True \ # 构建模型的参数 --max-seq-len 1024 \ # 模型可以接受的最大序列长度 --max-out-len 16 \ # 生成的最大 token 数 --batch-size 2 \ # 批量大小 --num-gpus 1 # 运行模型所需的 GPU 数量 --debug
遇到错误mkl-service + Intel(R) MKL MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 ... 解决方案:
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
如果一切正常,您应该看到屏幕上显示 “Starting inference process”:
测评介结束将会得到