必背积分表

  有19个积分公式,是必须死记硬背下来的。这是因为不管是应付考试还是实际工作中应用,如果每个积分都去推导,那么效率是非常低的,所以对于常见的不定积分是必须要死记硬背下来的。我把需要背的,全部列举出来:

幂函数

∫xn=xn+1n+1+C \int x^n=\frac{x^{n+1}}{n+1}+C xn=n+1xn+1+C

对数函数

∫dxx=ln⁡∣x∣+C \int \frac{dx}{x}=\ln |x|+C xdx=lnx+C

指数函数

∫exdx=ex+C∫axdx=axln⁡a+C \int e^xdx=e^x+C\\ \int a^xdx=\frac{a^x}{\ln a}+C exdx=ex+Caxdx=lnaax+C

双曲函数

∫sinh⁡xdx=cosh⁡x+C∫cosh⁡xdx=sinh⁡x+C \int \sinh x dx=\cosh x +C\\ \int \cosh x dx=\sinh x +C\\ sinhxdx=coshx+Ccoshxdx=sinhx+C

反双曲函数

∫dxx2+a2=sinh⁡−1(xa)+C,a>0∫dxx2−a2=cosh⁡−1(xa)+C,x>a>0 \int \frac{dx}{\sqrt{x^2+a^2}}=\sinh^{-1}(\frac x a)+C,a>0\\ \int \frac{dx}{\sqrt{x^2-a^2}}=\cosh^{-1}(\frac x a)+C,x>a>0\\ x2+a2dx=sinh1(ax)+C,a>0x2a2dx=cosh1(ax)+C,x>a>0
  反双曲函数中要注意反双曲余弦要x>ax>ax>a,如果不满足就要分成几部分加起来积分。

三角函数

  三角函数十分复杂啊,要背的也是贼多,总共有8个之多:
∫sin⁡xdx=−cos⁡x+C∫cos⁡xdx=sin⁡x+C∫sec⁡2xdx=tan⁡x+C∫csc⁡2xdx=−cot⁡x+C∫sec⁡xtan⁡xdx=sec⁡x+C∫csc⁡xcot⁡xdx=−csc⁡x+C∫tan⁡xdx=−ln⁡∣cos⁡x∣+C=ln⁡∣sec⁡x∣+C∫cot⁡xdx=ln⁡∣sin⁡x∣+C=−ln⁡∣csc⁡x∣+C \int \sin x dx = -\cos x+C\\ \int \cos x dx = \sin x +C\\ \int \sec^2 x dx =\tan x +C\\ \int \csc^2 x dx = -\cot x+C\\ \int \sec x \tan x dx = \sec x+C\\ \int \csc x\cot x dx = -\csc x+C\\ \int \tan x dx = -\ln |\cos x|+C = \ln |\sec x|+C\\ \int \cot x dx = \ln |\sin x|+C=-\ln |\csc x|+C sinxdx=cosx+Ccosxdx=sinx+Csec2xdx=tanx+Ccsc2xdx=cotx+Csecxtanxdx=secx+Ccscxcotxdx=cscx+Ctanxdx=lncosx+C=lnsecx+Ccotxdx=lnsinx+C=lncscx+C

反三角函数

∫dxa2−x2=arcsin⁡xa+C∫dxxx2−a2=1aarccos⁡∣ax∣+C∫dxx2+a2=1aarctan⁡xa+C \int \frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}a+C\\ \int \frac{dx}{x\sqrt{x^2-a^2}}=\frac1{a}\arccos |\frac{a}{x}|+C\\ \int \frac{dx}{{x^2+a^2}}=\frac1{a}{\arctan \frac{x}a}+C\\ a2x2dx=arcsinax+Cxx2a2dx=a1arccosxa+Cx2+a2dx=a1arctanax+C
  这19个积分公式,三角函数占了8个,加上反三角函数又有3个,但是考试时是经常出现,不能说因为难就不去背三角函数的积分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值