一、基本积分公式
-
常数积分:
∫C dx=Cx+C \int C \, dx = Cx + C ∫Cdx=Cx+C -
幂函数积分:
∫xn dx=xn+1n+1+C(n≠−1) \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)∫xndx=n+1xn+1+C(n=−1){∫1x2dx=−1x+C,∫1xdx=2x+C. \left\{ \begin{aligned} \int \frac{1}{x^2} dx &= -\frac{1}{x} + C, \\ \int \frac{1}{\sqrt{x}} dx &= 2\sqrt{x} + C. \end{aligned} \right. ⎩⎨⎧∫x21dx∫x1dx=−x1+C,=2x+C.特别地:∫1x dx=ln∣x∣+C\int \frac{1}{x} \, dx = \ln |x| + C∫x1dx=ln∣x∣+C -
指数函数积分:
∫ax dx=axlna+C(a>0,a≠1) \int a^x \, dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \neq 1) ∫axdx=lnaax+C(a>0,a=1)特别地:∫ex dx=ex+C\int e^x \, dx = e^x + C∫exdx=ex+C -
三角函数积分:
∫sinxdx=−cosx+C;\int \sin x dx = -\cos x + C;∫sinxdx=−cosx+C; ∫cosxdx=sinx+C; \quad \int \cos x dx = \sin x + C;∫cosxdx=sinx+C; ∫tanxdx=−ln∣cosx∣+C;\int \tan x dx = -\ln|\cos x| + C;∫tanxdx=−ln∣cosx∣+C; ∫cotxdx=ln∣sinx∣+C; \quad \int \cot x dx = \ln|\sin x| + C;∫cotxdx=ln∣sinx∣+C; ∫dxcosx=∫secxdx=ln∣secx+tanx∣+C;⋆\int \frac{dx}{\cos x} = \int \sec x dx = \ln|\sec x + \tan x| + C; \star∫cosxdx=∫secxdx=ln∣secx+tanx∣+C;⋆ ∫dxsinx=∫cscxdx=ln∣cscx−cotx∣+C;\int \frac{dx}{\sin x} = \int \csc x dx = \ln|\csc x - \cot x| + C;∫sinxdx=∫cscxdx=ln∣cscx−cotx∣+C;∫sec2xdx=tanx+C;\int \sec^2 x dx = \tan x + C;∫sec2xdx=tanx+C; ∫csc2xdx=−cotx+C; \quad \int \csc^2 x dx = -\cot x + C;∫csc2xdx=−cotx+C;∫secxtanxdx=secx+C;\int \sec x \tan x dx = \sec x + C; ∫secxtanxdx=secx+C; ∫cscxcotxdx=−cscx+C.\quad \int \csc x \cot x dx = -\csc x + C.∫cscxcotxdx=−cscx+C. -
反三角函数积分:
{∫11+x2dx=arctanx+C,∫1a2+x2dx=1aarctanxa+C(a>0).⋆ \left\{ \begin{aligned} \int \frac{1}{1+x^2} dx &= \arctan x + C, \\ \int \frac{1}{a^2+x^2} dx &= \frac{1}{a}\arctan\frac{x}{a} + C \quad (a>0).\star \end{aligned} \right. ⎩⎨⎧∫1+x21dx∫a2+x21dx=arctanx+C,=a1arctanax+C(a>0).⋆{∫11−x2dx=arcsinx+C,∫1a2−x2dx=arcsinxa+C(a>0). \left\{ \begin{aligned} \int \frac{1}{\sqrt{1-x^2}} dx &= \arcsin x + C, \\ \int \frac{1}{\sqrt{a^2-x^2}} dx &= \arcsin\frac{x}{a} + C \quad (a>0). \end{aligned} \right. ⎩⎨⎧∫1−x21dx∫a2−x21dx=arcsinx+C,=arcsinax+C(a>0). -
根式积分
双曲函数{∫1x2+a2dx=ln(x+x2+a2)+C(常见a=1),∫1x2−a2dx=ln∣x+x2−a2∣+C(∣x∣>∣a∣).[ln(x+x2+1)]′=1x2+1,[ln(x+x2−1)]′=1x2−1 双曲函数\left\{ \begin{aligned} \int \frac{1}{\sqrt{x^2+a^2}} dx &= \ln(x+\sqrt{x^2+a^2})+C \quad (\text{常见} a=1), \\ \int \frac{1}{\sqrt{x^2-a^2}} dx &= \ln|x+\sqrt{x^2-a^2}|+C \quad (|x|>|a|). \end{aligned} \right. \left[\ln(x+\sqrt{x^2+1})\right]^{\prime}=\frac{1}{\sqrt{x^2+1}},\left[\ln(x+\sqrt{x^2-1})\right]^{\prime}=\frac{1}{\sqrt{x^2-1}} 双曲函数⎩⎨⎧∫x2+a21dx∫x2−a21dx=ln(x+x2+a2)+C(常见a=1),=ln∣x+x2−a2∣+C(∣x∣>∣a∣).[ln(x+x2+1)]′=x2+11,[ln(x+x2−1)]′=x2−11∫a2−x2dx=a22arcsinxa+x2a2−x2+C(a>∣x∣≥0).三角函数换元法来求解\int \sqrt{a^2-x^2} dx = \frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C \quad (a>|x|\ge0).三角函数换元法来求解∫a2−x2dx=2a2arcsinax+2xa2−x2+C(a>∣x∣≥0).三角函数换元法来求解 -
有理函数积分
{∫1x2−a2dx=12aln∣x−ax+a∣+C,∫1a2−x2dx=12aln∣x+ax−a∣+C.部分分式分解法来求解\left\{ \begin{aligned} \int \frac{1}{x^2-a^2} dx = \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C,\\ \quad \int \frac{1}{a^2-x^2} dx = \frac{1}{2a}\ln\left|\frac{x+a}{x-a}\right|+C. \end{aligned} \right.部分分式分解法来求解⎩⎨⎧∫x2−a21dx=2a1lnx+ax−a+C,∫a2−x21dx=2a1lnx−ax+a+C.部分分式分解法来求解
二、不定积分的积分法
2.1 凑微分法
凑微分法是求解不定积分的一种重要方法,它也常被称为换元法的一种特殊形式。当被积函数可以表示为一个复合函数乘以其内层函数的导数时,我们可以利用复合函数求导的逆运算将被积函数进行变形。
∫f(g(x))g′(x)dx=∫f(g(x))d(g(x))=F(g(x))+C\int f(g(x)) g'(x) dx = \int f(g(x)) d(g(x)) = F(g(x)) + C∫f(g(x))g′(x)dx=∫f(g(x))d(g(x))=F(g(x))+C
2.2 换元法
换元法通过引入一个新的变量来简化复杂的积分表达式。它的核心思想是将原本关于 xxx 的积分 ∫f(x)dx\int f(x)dx∫f(x)dx 转化为一个关于新变量 uuu 的更容易求解的积分。
其通用公式为:
∫f(x)dx=∫f[g(u)]d[g(u)]=∫f[g(u)]g′(u)du\int f(x)dx = \int f[g(u)]d[g(u)] = \int f[g(u)]g'(u)du∫f(x)dx=∫f[g(u)]d[g(u)]=∫f[g(u)]g′(u)du
这里,我们令 x=g(u)x = g(u)x=g(u),则 dx=g′(u)dudx = g'(u)dudx=g′(u)du。
常用换元方法
列举了几种常见的换元法,每种方法都针对特定类型的被积函数。
-
三角函数代换
当被积函数含有根式时,通常考虑使用三角函数代换,这样可以将根号去掉,使积分简化,这里 aaa > 0 。- 含 a2−x2\sqrt{a^2-x^2}a2−x2:令 x=asintx = a\sin tx=asint,其中 −π2≤t≤π2-\frac{\pi}{2} \le t \le \frac{\pi}{2}−2π≤t≤2π。
- 含 a2+x2\sqrt{a^2+x^2}a2+x2:令 x=atantx = a\tan tx=atant,其中 −π2<t<π2-\frac{\pi}{2} < t < \frac{\pi}{2}−2π<t<2π。
- 含 x2−a2\sqrt{x^2-a^2}x2−a2:令 x=asectx = a\sec tx=asect,当 x>0x > 0x>0 时 0<t<π20 < t < \frac{\pi}{2}0<t<2π;当 x<0x < 0x<0 时 π<t<3π2\pi < t < \frac{3\pi}{2}π<t<23π。
如果被积函数中含有 ax2+bx+c\sqrt{ax^2+bx+c}ax2+bx+c 的形式,可以先通过配方法将其化为上述三种基本形式之一,然后再进行三角函数代换。
-
根式代换
当被积函数含有 ax+b\sqrt{ax+b}ax+b 或 ax+bn\sqrt[n]{ax+b}nax+b 等根式时,可以直接令根式等于新变量 ttt,即:- 令 t=ax+bt = \sqrt{ax+b}t=ax+b 或 t=ax+bnt = \sqrt[n]{ax+b}t=nax+b。
- 更一般地,如果被积函数中含有 ax+bm\sqrt[m]{ax+b}max+b 和 ax+bn\sqrt[n]{ax+b}nax+b,则令 t=ax+bkt = \sqrt[k]{ax+b}t=kax+b,其中 kkk 是 mmm 和 nnn 的最小公倍数。
-
倒代换
当被积函数的分母幂次比分子幂次高于2及以上,可以考虑使用倒代换,即令 x=1tx = \frac{1}{t}x=t1。 -
复合函数的直接代换 (凑微分法)
当被积函数中含有 exe^xex, lnx\ln xlnx, arcsinx\arcsin xarcsinx, arctanx\arctan xarctanx 等复合函数时,可以考虑直接将复杂函数作为新变量。将复杂函数 = ttt。
2.3 分部积分公式
分部积分法的基本思想是将两个函数的乘积的积分,转化为一个积分和一个代数表达式的差。它来源于乘积求导法则的逆运算。
-
基本公式:
∫udv=uv−∫vdu\int udv = uv - \int vdu∫udv=uv−∫vdu其中 uuu 和 vvv 是关于 xxx 的函数。
这个公式特别适用于求解 ∫udv\int udv∫udv 比较困难,而 ∫vdu\int vdu∫vdu 相对容易的情况。 -
uuu 和 dvdvdv 的选择原则
反,对,幂,指,三
一般选排在前面的函数更适合作为 uuu。 -
具体选择策略:
- 当被积函数是 Pn(x)eaxP_n(x)e^{ax}Pn(x)eax, Pn(x)sinaxP_n(x)\sin axPn(x)sinax, Pn(x)cosaxP_n(x)\cos axPn(x)cosax 等形式时(其中 Pn(x)P_n(x)Pn(x) 是 xxx 的 nnn 次多项式):
- 通常选择多项式 Pn(x)P_n(x)Pn(x) 为 uuu,因为它求导后会降次,最终变为常数。
- 当被积函数是 eaxsinbxe^{ax}\sin bxeaxsinbx, eaxcosbxe^{ax}\cos bxeaxcosbx 等形式时:
- 通常选择指数函数或三角函数中的任意一个为 uuu。这类函数经过两次分部积分后会回到原始形式,可以构造方程求解。
- 当被积函数是 lnx\ln xlnx, arcsinx\arcsin xarcsinx, arctanx\arctan xarctanx 等形式时:
- 通常选择**lnx\ln xlnx, arcsinx\arcsin xarcsinx, arctanx\arctan xarctanx 为 uuu**。因为它们的导数都是代数形式,可以简化积分。
- 当被积函数是 Pn(x)eaxP_n(x)e^{ax}Pn(x)eax, Pn(x)sinaxP_n(x)\sin axPn(x)sinax, Pn(x)cosaxP_n(x)\cos axPn(x)cosax 等形式时(其中 Pn(x)P_n(x)Pn(x) 是 xxx 的 nnn 次多项式):
-
分部积分法的推广公式
当需要多次使用分部积分法时,可以采用列表法或表格法来简化计算,特别是对于 Pn(x)eaxP_n(x)e^{ax}Pn(x)eax 或 Pn(x)sinaxP_n(x)\sin axPn(x)sinax 等形式。
∫uv(n+1)dx=uv(n)−u′v(n−1)+u′′v(n−2)−⋯+(−1)nu(n)v+(−1)n+1∫u(n+1)vdx\int uv^{(n+1)}dx = uv^{(n)}-u'v^{(n-1)}+u''v^{(n-2)}-\cdots+(-1)^{n}u^{(n)}v+(-1)^{n+1}\int u^{(n+1)}vdx∫uv(n+1)dx=uv(n)−u′v(n−1)+u′′v(n−2)−⋯+(−1)nu(n)v+(−1)n+1∫u(n+1)vdx -
计算方法: 以 uuu 作为起点,从左上角开始,和右下角的函数错位相乘。各项的符号依次为“+”, “-”, “+”, “-”,以此类推。最后一项为 ∫u(4)vdx\int u^{(4)}v dx∫u(4)vdx。
-
求解 ∫(x3+2x+6)e2xdx\int (x^3+2x+6)e^{2x}dx∫(x3+2x+6)e2xdx 的具体应用
| uuu | x3+2x+6x^3+2x+6x3+2x+6 | 3x2+23x^2+23x2+2 | 6x6x6x | 666 | 000 |
|---|---|---|---|---|---|
| v(4)v^{(4)}v(4) | e2xe^{2x}e2x | 12e2x\frac{1}{2}e^{2x}21e2x | 14e2x\frac{1}{4}e^{2x}41e2x | 18e2x\frac{1}{8}e^{2x}81e2x | 116e2x\frac{1}{16}e^{2x}161e2x |
- 计算过程:
+(x3+2x+6)⋅(12e2x)+(x^3+2x+6) \cdot (\frac{1}{2}e^{2x})+(x3+2x+6)⋅(21e2x)
−(3x2+2)⋅(14e2x)- (3x^2+2) \cdot (\frac{1}{4}e^{2x})−(3x2+2)⋅(41e2x)
+(6x)⋅(18e2x)+ (6x) \cdot (\frac{1}{8}e^{2x})+(6x)⋅(81e2x)
−(6)⋅(116e2x)- (6) \cdot (\frac{1}{16}e^{2x})−(6)⋅(161e2x)
由于最后一项的导数为 0,因此积分项为 0。最终结果为上述四项之和再加上常数 CCC。
=(x3+2x+6)(12e2x)−(3x2+2)(14e2x)+(6x)(18e2x)−(6)(116e2x)+C= (x^3+2x+6)(\frac{1}{2}e^{2x}) - (3x^2+2)(\frac{1}{4}e^{2x}) + (6x)(\frac{1}{8}e^{2x}) - (6)(\frac{1}{16}e^{2x}) + C=(x3+2x+6)(21e2x)−(3x2+2)(41e2x)+(6x)(81e2x)−(6)(161e2x)+C
2.4 有理函数的积分
-
定义
有理函数的积分是指形如 ∫Pn(x)Qm(x)dx\int \frac{P_n(x)}{Q_m(x)} dx∫Qm(x)Pn(x)dx 的积分,其中 Pn(x)P_n(x)Pn(x) 和 Qm(x)Q_m(x)Qm(x) 分别是 nnn 次和 mmm 次多项式。 -
思想
如果分母 Qm(x)Q_m(x)Qm(x) 在实数域内可以因式分解,那么可以将有理函数 Pn(x)Qm(x)\frac{P_n(x)}{Q_m(x)}Qm(x)Pn(x) 拆分成若干个最简有理分式之和。最简有理分式有四种形式:
Aax+b,Ak(ax+b)k,Ax+Bpx2+qx+r,Akx+Bk(px2+qx+r)k\frac{A}{ax+b}, \quad \frac{A_k}{(ax+b)^k}, \quad \frac{Ax+B}{px^2+qx+r}, \quad \frac{A_kx+B_k}{(px^2+qx+r)^k}ax+bA,(ax+b)kAk,px2+qx+rAx+B,(px2+qx+r)kAkx+Bk其中 k>0,k≠1k > 0, k \ne 1k>0,k=1。 -
实例
∫1x+1dx=ln∣x+1∣+C\int \frac{1}{x+1}dx = \ln|x+1|+C∫x+11dx=ln∣x+1∣+C ∫2(2x−1)2dx=∫1(2x−1)2d(2x−1)=−12x−1+C\int \frac{2}{(2x-1)^2}dx = \int \frac{1}{(2x-1)^2}d(2x-1) = -\frac{1}{2x-1}+C∫(2x−1)22dx=∫(2x−1)21d(2x−1)=−2x−11+C ∫x−1x2+1dx=∫xx2+1dx−∫1x2+1dx=12ln(x2+1)−arctanx+C\int \frac{x-1}{x^2+1}dx = \int \frac{x}{x^2+1}dx - \int \frac{1}{x^2+1}dx = \frac{1}{2}\ln(x^2+1) - \arctan x + C∫x2+1x−1dx=∫x2+1xdx−∫x2+11dx=21ln(x2+1)−arctanx+C
利用分部积分逆推 I=∫dx(1+x2)2I = \int \frac{dx}{(1+x^2)^2}I=∫(1+x2)2dx
∫11+x2dx=x1+x2+∫x⋅2x(1+x2)2dx\int \frac{1}{1+x^2}dx = \frac{x}{1+x^2} + \int x \cdot \frac{2x}{(1+x^2)^2}dx∫1+x21dx=1+x2x+∫x⋅(1+x2)22xdx=x1+x2+2∫x2+1−1(1+x2)2dx= \frac{x}{1+x^2} + 2\int \frac{x^2+1-1}{(1+x^2)^2}dx=1+x2x+2∫(1+x2)2x2+1−1dx=x1+x2+2arctanx−2I= \frac{x}{1+x^2} + 2\arctan x - 2I=1+x2x+2arctanx−2I最终得到:∫dx(1+x2)2=x2(1+x2)+12arctanx+C\int \frac{dx}{(1+x^2)^2} = \frac{x}{2(1+x^2)} + \frac{1}{2}\arctan x + C∫(1+x2)2dx=2(1+x2)x+21arctanx+C -
方法(如何拆分)
根据分母 Qm(x)Q_m(x)Qm(x) 的因式分解形式,将其拆分为最简分式之和:- 单次因式 ax+bax+bax+b 对应一项:Aax+b\frac{A}{ax+b}ax+bA
- kkk 重单次因式 (ax+b)k(ax+b)^k(ax+b)k 对应 kkk 项:A1ax+b+A2(ax+b)2+⋯+Ak(ax+b)k(k>0,k≠1)\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \cdots + \frac{A_k}{(ax+b)^k} \quad (k>0, k \ne 1)ax+bA1+(ax+b)2A2+⋯+(ax+b)kAk(k>0,k=1)
- 单次二次因式 px2+qx+rpx^2+qx+rpx2+qx+r (其中 q2−4pr<0q^2-4pr<0q2−4pr<0) 对应一项: Ax+Bpx2+qx+r\frac{Ax+B}{px^2+qx+r}px2+qx+rAx+B
- kkk 重二次因式 (px2+qx+r)k(px^2+qx+r)^k(px2+qx+r)k 对应 kkk 项:A1x+B1px2+qx+r+A2x+B2(px2+qx+r)2+⋯+Akx+Bk(px2+qx+r)k\frac{A_1x+B_1}{px^2+qx+r} + \frac{A_2x+B_2}{(px^2+qx+r)^2} + \cdots + \frac{A_kx+B_k}{(px^2+qx+r)^k}px2+qx+rA1x+B1+(px2+qx+r)2A2x+B2+⋯+(px2+qx+r)kAkx+Bk
- 例如,如果 Qm(x)=(ax+b)2(px2+qx+r)2Q_m(x) = (ax+b)^2(px^2+qx+r)^2Qm(x)=(ax+b)2(px2+qx+r)2,则有:PQ=A1ax+b+A2(ax+b)2+A3x+B1px2+qx+r+A4x+B2(px2+qx+r)2\frac{P}{Q} = \frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \frac{A_3x+B_1}{px^2+qx+r} + \frac{A_4x+B_2}{(px^2+qx+r)^2}QP=ax+bA1+(ax+b)2A2+px2+qx+rA3x+B1+(px2+qx+r)2A4x+B2
- 求解参数办法
通分后,对应相等;
赋予特殊的 xxx 值。
三、定积分计算的基本方法
3.1 牛顿-莱布尼茨公式
- 基本公式
如果连续函数 f(x)f(x)f(x) 在区间 [a,b][a, b][a,b] 上有一个原函数 F(x)F(x)F(x),那么:
∫abf(x)dx=F(x)∣ab=F(b)−F(a)\int_a^b f(x)dx = F(x)|_a^b = F(b) - F(a)∫abf(x)dx=F(x)∣ab=F(b)−F(a) - 牛顿-莱布尼茨公式推广
- 如果函数 f(x)f(x)f(x) 在区间 [a,b][a, b][a,b] 上有原函数 F(x)F(x)F(x),上述公式也成立;
- 如果 f(x)f(x)f(x) 在 [a,b][a, b][a,b] 上是分段有原函数的,如在 [a,c][a, c][a,c] 上有原函数 F1(x)F_1(x)F1(x),在 [c,b][c, b][c,b] 上有原函数 F2(x)F_2(x)F2(x),那么:
∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx=F1(c−0)−F1(a)+F2(b)−F2(c+0)\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx = F_1(c-0) - F_1(a) + F_2(b) - F_2(c+0)∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx=F1(c−0)−F1(a)+F2(b)−F2(c+0)如果 F1(c−0)F_1(c-0)F1(c−0) 和 F2(c+0)F_2(c+0)F2(c+0) 都存在,则定积分收敛。
如果 F1(c−0)F_1(c-0)F1(c−0) 和 F2(c+0)F_2(c+0)F2(c+0) 至少有一个不存在,则定积分发散。
3.2 定积分的换元积分法
设函数 f(x)f(x)f(x) 在 [a,b][a, b][a,b] 上连续,且 x=ϕ(t)x=\phi(t)x=ϕ(t) 满足:
①ϕ(α)=a,ϕ(β)=b\phi(\alpha)=a, \phi(\beta)=bϕ(α)=a,ϕ(β)=b
②x=ϕ(t)x=\phi(t)x=ϕ(t) 在 [α,β][\alpha, \beta][α,β] 或 [β,α][\beta, \alpha][β,α] 上有连续的导数,且其值域为 Rϕ⊆[a,b]R_\phi \subseteq [a, b]Rϕ⊆[a,b]
∫abf(x)dx=∫αβf(ϕ(t))ϕ′(t)dt\int_a^b f(x)dx = \int_\alpha^\beta f(\phi(t))\phi'(t)dt∫abf(x)dx=∫αβf(ϕ(t))ϕ′(t)dt注意: 当 ϕ(t)\phi(t)ϕ(t) 的值域 RϕR_\phiRϕ 超出 [a,b][a, b][a,b] 时,只要 f(x)f(x)f(x) 在 RϕR_\phiRϕ 上连续,上述结论仍然成立。
3.3 定积分的分部积分法
如果函数 u(x)u(x)u(x) 和 v(x)v(x)v(x) 在 [a,b][a, b][a,b] 上有连续的导数 u′(x)u'(x)u′(x) 和 v′(x)v'(x)v′(x),则:
∫abu(x)v′(x)dx=u(x)v(x)∣ab−∫abv(x)u′(x)dx\int_a^b u(x)v'(x)dx = u(x)v(x)|_a^b - \int_a^b v(x)u'(x)dx∫abu(x)v′(x)dx=u(x)v(x)∣ab−∫abv(x)u′(x)dx
3.4 定积分计算的特殊性质与技巧
-
奇偶函数的积分性质
如果函数 f(x)f(x)f(x) 是在对称区间 [−a,a][-a, a][−a,a] 上的连续函数:- 如果 f(x)f(x)f(x) 是偶函数,则:∫−aaf(x)dx=2∫0af(x)dx\int_{-a}^a f(x)dx = 2\int_0^a f(x)dx∫−aaf(x)dx=2∫0af(x)dx
- 如果 f(x)f(x)f(x) 是奇函数,则:∫−aaf(x)dx=0\int_{-a}^a f(x)dx = 0∫−aaf(x)dx=0
-
周期函数的积分性质
设 f(x)f(x)f(x) 是以 TTT 为周期的连续函数,则对于任意的实数 aaa,都有:
∫aa+Tf(x)dx=∫0Tf(x)dx\int_a^{a+T} f(x)dx = \int_0^T f(x)dx∫aa+Tf(x)dx=∫0Tf(x)dx这意味着在长度为一个周期 TTT 的区间上的定积分值,与该区间的起点位置无关。
特殊情况: 如果 f(x)f(x)f(x) 是连续且以 TTT 为周期的奇函数,则 ∫0Tf(x)dx=0\int_0^T f(x)dx = 0∫0Tf(x)dx=0。 -
区间再现公式
设 f(x)f(x)f(x) 为连续函数,则:
∫abf(x)dx=∫abf(a+b−x)dx\int_a^b f(x)dx = \int_a^b f(a+b-x)dx∫abf(x)dx=∫abf(a+b−x)dx
这个公式在某些定积分计算中非常有用,特别是当 f(x)f(x)f(x) 形式复杂,而 f(x)+f(a+b−x)f(x) + f(a+b-x)f(x)+f(a+b−x) 形式简单时。
举例: 计算 ∫0π/4ln(1+tanx)dx\int_0^{\pi/4} \ln(1+\tan x)dx∫0π/4ln(1+tanx)dx。
令 I=∫0π/4ln(1+tanx)dxI = \int_0^{\pi/4} \ln(1+\tan x)dxI=∫0π/4ln(1+tanx)dx。
根据区间再现公式,我们有 x→π4−xx \to \frac{\pi}{4} - xx→4π−x:
I=∫0π/4ln(1+tan(π4−x))dx=∫0π/4ln(1+1−tanx1+tanx)dx=∫0π/4ln(1+tanx+1−tanx1+tanx)dx=∫0π/4ln(21+tanx)dxI = \int_0^{\pi/4} \ln(1+\tan(\frac{\pi}{4}-x))dx = \int_0^{\pi/4} \ln(1+\frac{1-\tan x}{1+\tan x})dx=\int_0^{\pi/4} \ln(\frac{1+\tan x+1-\tan x}{1+\tan x})dx = \int_0^{\pi/4} \ln(\frac{2}{1+\tan x})dxI=∫0π/4ln(1+tan(4π−x))dx=∫0π/4ln(1+1+tanx1−tanx)dx=∫0π/4ln(1+tanx1+tanx+1−tanx)dx=∫0π/4ln(1+tanx2)dx=∫0π4ln(1+tanx)+ln(21+tanx)2 dx=π8ln2=\int_0^{\frac{\pi}{4}} \frac{\ln(1 + \tan x) + \ln\left(\frac{2}{1 + \tan x}\right)}{2} \, dx = \frac{\pi}{8} \ln 2=∫04π2ln(1+tanx)+ln(1+tanx2)dx=8πln2
3.5 华里士(Wallis)公式及其变体
-
核心公式(区间 [0,π/2][0, \pi/2][0,π/2])
∫0π2sinnxdx=∫0π2cosnxdx={n−1n⋅n−3n−2⋅…⋅23⋅1,当 n>1 为奇数时n−1n⋅n−3n−2⋅…⋅12⋅π2,当 n 为正偶数时\int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{2}{3} \cdot 1, & \text{当 } n > 1 \text{ 为奇数时} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{当 } n \text{ 为正偶数时} \end{cases}∫02πsinnxdx=∫02πcosnxdx={nn−1⋅n−2n−3⋅…⋅32⋅1,nn−1⋅n−2n−3⋅…⋅21⋅2π,当 n>1 为奇数时当 n 为正偶数时 -
变体公式(区间 [0,π][0, \pi][0,π])
∫0πsinnxdx={2⋅n−1n⋅n−3n−2⋅…⋅23⋅1,当 n>1 为奇数时2⋅n−1n⋅n−3n−2⋅…⋅12⋅π2,当 n 为正偶数时\int_0^{\pi} \sin^n x dx = \begin{cases} 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{2}{3} \cdot 1, & \text{当 } n > 1 \text{ 为奇数时} \\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{当 } n \text{ 为正偶数时} \end{cases}∫0πsinnxdx={2⋅nn−1⋅n−2n−3⋅…⋅32⋅1,2⋅nn−1⋅n−2n−3⋅…⋅21⋅2π,当 n>1 为奇数时当 n 为正偶数时∫0πcosnxdx={0,当 n 为正奇数时2⋅n−1n⋅n−3n−2⋅…⋅12⋅π2,当 n 为正偶数时\int_0^{\pi} \cos^n x dx = \begin{cases} 0, & \text{当 } n \text{ 为正奇数时} \\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{当 } n \text{ 为正偶数时} \end{cases}∫0πcosnxdx={0,2⋅nn−1⋅n−2n−3⋅…⋅21⋅2π,当 n 为正奇数时当 n 为正偶数时 -
变体公式(区间 [0,2π][0, 2\pi][0,2π])
∫02πsinnxdx=∫02πcosnxdx={0,当 n 为正奇数时4⋅n−1n⋅n−3n−2⋅…⋅12⋅π2,当 n 为正偶数时\int_0^{2\pi} \sin^n x dx = \int_0^{2\pi} \cos^n x dx = \begin{cases} 0, & \text{当 } n \text{ 为正奇数时} \\ 4 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{当 } n \text{ 为正偶数时} \end{cases}∫02πsinnxdx=∫02πcosnxdx={0,4⋅nn−1⋅n−2n−3⋅…⋅21⋅2π,当 n 为正奇数时当 n 为正偶数时 -
例子
∫0π2sin8xdx=78⋅56⋅34⋅12⋅π2=35π256\int_0^{\frac{\pi}{2}} \sin^8 x dx = \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{35\pi}{256}∫02πsin8xdx=87⋅65⋅43⋅21⋅2π=25635π∫0πsin9xdx=2∫0π2sin9xdx=2⋅89⋅67⋅45⋅23⋅1=256315\int_0^{\pi} \sin^9 x dx = 2 \int_0^{\frac{\pi}{2}} \sin^9 x dx = 2 \cdot \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \cdot 1 = \frac{256}{315}∫0πsin9xdx=2∫02πsin9xdx=2⋅98⋅76⋅54⋅32⋅1=315256
四、变限积分的计算
4.1 变限积分求导公式
设 F(x)=∫ϕ1(x)ϕ2(x)f(t)dtF(x) = \int_{\phi_1(x)}^{\phi_2(x)} f(t) dtF(x)=∫ϕ1(x)ϕ2(x)f(t)dt,其中 f(t)f(t)f(t) 在区间 [a,b][a, b][a,b] 上连续,可导函数 ϕ1(x)\phi_1(x)ϕ1(x) 和 ϕ2(x)\phi_2(x)ϕ2(x) 的值域在 [a,b][a, b][a,b] 上。
则在函数 ϕ1(x)\phi_1(x)ϕ1(x) 和 ϕ2(x)\phi_2(x)ϕ2(x) 的公共定义域上,有:
F′(x)=f[ϕ2(x)]ϕ2′(x)−f[ϕ1(x)]ϕ1′(x)F'(x) = f[\phi_2(x)]\phi_2'(x) - f[\phi_1(x)]\phi_1'(x)F′(x)=f[ϕ2(x)]ϕ2′(x)−f[ϕ1(x)]ϕ1′(x)
4.2 变限积分的重要结论
-
若 f(x)f(x)f(x) 为可积的奇函数,则 ∫axf(t)dt\int_a^x f(t) dt∫axf(t)dt:
- 当 a=0a=0a=0 时,∫0xf(t)dt\int_0^x f(t) dt∫0xf(t)dt 为偶函数。
- 当 a≠0a \neq 0a=0 时,∫axf(t)dt\int_a^x f(t) dt∫axf(t)dt 为偶函数。
- 注意:若 f(x)f(x)f(x) 为连续的奇函数,则 ∫axf(t)dt+C\int_a^x f(t) dt + C∫axf(t)dt+C 也是偶函数,故 f(x)f(x)f(x) 的全体原函数均为偶函数。
-
若 f(x)f(x)f(x) 为可积的偶函数,则 ∫axf(t)dt\int_a^x f(t) dt∫axf(t)dt:
- 当 a=0a=0a=0 时,∫0xf(t)dt\int_0^x f(t) dt∫0xf(t)dt 为奇函数。
- 当 a≠0a \neq 0a=0 时,∫axf(t)dt=∫0xf(t)dt\int_a^x f(t) dt = \int_{0}^x f(t) dt∫axf(t)dt=∫0xf(t)dt,为奇函数。
- 当 a≠0a \neq 0a=0 时,∫axf(t)dt≠∫0xf(t)dt\int_a^x f(t) dt \neq \int_{0}^x f(t) dt∫axf(t)dt=∫0xf(t)dt,为非奇非偶函数。
- 注意:若 f(x)f(x)f(x) 为连续的偶函数,则 f(x)f(x)f(x) 的全体原函数中,只有 ∫0xf(t)dt\int_0^x f(t) dt∫0xf(t)dt 是奇函数。
-
可积周期函数的变限积分
- 若 f(x)f(x)f(x) 是可积的且以 TTT 为周期的函数,则 ∫axf(t)dt\int_a^x f(t) dt∫axf(t)dt 是以 TTT 为周期的函数 ⟺ ∫0Tf(t)dt=0\iff \int_0^T f(t) dt = 0⟺∫0Tf(t)dt=0。
- 注意:∫axf(t)dt=∫a0f(t)dt+∫0xf(t)dt\int_a^x f(t) dt = \int_a^0 f(t) dt+\int_0^x f(t) dt∫axf(t)dt=∫a0f(t)dt+∫0xf(t)dt,其中 ∫0xf(t)dt\int_0^x f(t) dt∫0xf(t)dt 亦是以 TTT 为周期的周期函数(当 ∫0Tf(t)dt=0\int_0^T f(t) dt = 0∫0Tf(t)dt=0 时),而 ∫a0f(t)dt\int_a^0 f(t) dt∫a0f(t)dt 为常数,故两者之和也为周期函数。
五、反常积分的计算
- 在计算反常积分时,注意识别奇点(端点、内部)。
- 在收敛的条件下,通过换元法可能实现反常积分与定积分的相互转化。
5.1 分布积分法可能建立的递推式
- 分布积分法可能建立递推式 In=nIn−1I_n = n I_{n-1}In=nIn−1
问题:计算 In=∫0+∞xne−xdxI_n = \int_0^{+\infty} x^n e^{-x} dxIn=∫0+∞xne−xdx,nnn 为非负整数。
推导过程:
In=∫0+∞xne−xdx=−∫0+∞xnd(e−x)=−[xne−x]∣0+∞+n∫0+∞xn−1e−xdxI_n = \int_0^{+\infty} x^n e^{-x} dx =-\int_0^{+\infty} x^n d({e^{-x}}) = -[x^n e^{-x}]\Big|_0^{+\infty} + n \int_0^{+\infty} x^{n-1} e^{-x} dxIn=∫0+∞xne−xdx=−∫0+∞xnd(e−x)=−[xne−x]0+∞+n∫0+∞xn−1e−xdx
因为 limx→+∞xne−x=0\lim_{x \to +\infty} x^n e^{-x} = 0limx→+∞xne−x=0,所以 [xne−x]∣0+∞=0[x^n e^{-x}]\Big|_0^{+\infty} = 0[xne−x]0+∞=0。
由此得到递推关系:
In=nIn−1I_n = n I_{n-1}In=nIn−1
结论:通过不断应用此递推关系,我们可以得到:
In=nIn−1=n(n−1)In−2=⋯=n(n−1)⋯1⋅I0I_n = n I_{n-1} = n(n-1)I_{n-2} = \dots = n(n-1)\cdots 1 \cdot I_0In=nIn−1=n(n−1)In−2=⋯=n(n−1)⋯1⋅I0其中 I0=∫0+∞e−xdx=[−e−x]∣0+∞=0−(−1)=1I_0 = \int_0^{+\infty} e^{-x} dx = [-e^{-x}]\Big|_0^{+\infty} = 0 - (-1) = 1I0=∫0+∞e−xdx=[−e−x]0+∞=0−(−1)=1。
因此,最终结论为 In=n!I_n = n!In=n!。
5.2 Gamma 函数及其应用
计算积分时,若能用上“Γ\GammaΓ 函数”的知识,会既快速又准确。
定义:Γ(α)=∫0+∞xα−1e−xdx=x=t22∫0+∞t2α−1e−t2dt(x,t>0)\Gamma(\alpha)=\int_{0}^{+\infty}x^{\alpha-1}e^{-x}dx\overset{x=t^2}{\operatorname*{=}}2\int_{0}^{+\infty}t^{2\alpha-1}e^{-t^2}dt(x,t>0)Γ(α)=∫0+∞xα−1e−xdx=x=t22∫0+∞t2α−1e−t2dt(x,t>0)递推式:Γ(α+1)=∫0+∞xαe−xdx=−∫0+∞xαd(e−x)=−xαe−x∣0+∞+∫0+∞e−xαxα−1dx=αΓ(α)\Gamma(\alpha+1) = \int_0^{+\infty} x^{\alpha} e^{-x} dx = - \int_0^{+\infty} x^{\alpha} d(e^{-x}) = -x^\alpha e^{-x} \Big|_0^{+\infty} + \int_0^{+\infty} e^{-x} \alpha x^{\alpha-1} dx = \alpha \Gamma(\alpha)Γ(α+1)=∫0+∞xαe−xdx=−∫0+∞xαd(e−x)=−xαe−x0+∞+∫0+∞e−xαxα−1dx=αΓ(α) 特殊值:
-
Γ(1)=∫0+∞e−xdx=1\Gamma(1) = \int_0^{+\infty} e^{-x} dx = 1Γ(1)=∫0+∞e−xdx=1。
-
Γ(12)=2∫0+∞e−t2dt=2⋅π2=π\Gamma(\frac{1}{2}) = 2 \int_0^{+\infty} e^{-t^2} dt = 2 \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\pi}Γ(21)=2∫0+∞e−t2dt=2⋅2π=π。
标准正态分布的概率密度函数为:f(x)=12πe−x22f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}f(x)=2π1e−2x2
在整个实数轴上的积分结果为:∫−∞+∞12πe−x22 dx=1\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx = 1∫−∞+∞2π1e−2x2dx=1 -
Γ(n+1)=n!\Gamma(n+1) = n!Γ(n+1)=n! (当 nnn 为非负整数时,Gamma 函数与阶乘有此关系)。
-
Γ(2)=1!=1\Gamma(2) = 1! = 1Γ(2)=1!=1。
-
Γ(52)=32⋅Γ(32)=32⋅12⋅Γ(12)=34π\Gamma(\frac{5}{2}) = \frac{3}{2} \cdot \Gamma(\frac{3}{2}) = \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma(\frac{1}{2}) = \frac{3}{4}\sqrt{\pi}Γ(25)=23⋅Γ(23)=23⋅21⋅Γ(21)=43π。
34万+

被折叠的 条评论
为什么被折叠?



