【高等数学】秒杀必背积分表实数部分

欢迎纠错


常用极限,导数,级数
秒杀必背积分表实数部分
秒杀必背积分表三角部分


实数部分

∫ ln ⁡ x d x = ( ln ⁡ x − 1 ) x + C   ∫ d x x 2 + a 2 = 1 a a r c t a n ( x a ) + C   ∫ d x x 2 − a 2 = 1 2 a l n ∣ x − a x + a ∣ + C \int \ln xdx=(\ln x -1)x+C\\\ \\ \int \frac{dx}{x^2+a^2} = \frac{1}{a}arctan(\frac{x}{a})+C\\\ \\ \int \frac{dx}{x^2-a^2} = \frac{1}{2a}ln|\frac{x-a}{x+a}|+C lnxdx=(lnx1)x+C x2+a2dx=a1arctan(ax)+C x2a2dx=2a1lnx+axa+C


∫ d x x 2 + a 2 = l n ( x + x 2 + a 2 ) + C   ∫ d x ( x 2 + a 2 ) 3 = x a 2 x 2 + a 2 + C   ∫ x x 2 + a 2 d x = x 2 + a 2 + C   ∫ x ( x 2 + a 2 ) 3 d x = − 1 x 2 + a 2 + C \int \frac{dx}{\sqrt{x^2+a^2}}=ln(x+\sqrt{x^2+a^2})+C\\\ \\ \int \frac{dx}{\sqrt{(x^2+a^2)^3}}=\frac{x}{a^2\sqrt{x^2+a^2}}+C\\\ \\ \int \frac{x}{\sqrt{x^2+a^2}}dx=\sqrt{x^2+a^2}+C\\\ \\ \int \frac{x}{\sqrt{(x^2+a^2)^3}}dx=-\frac{1}{\sqrt{x^2+a^2}}+C x2+a2 dx=ln(x+x2+a2 )+C (x2+a2)3 dx=a2x2+a2 x+C x2+a2 xdx=x2+a2 +C (x2+a2)3 xdx=x2+a2 1+C


∫ d x x 2 − a 2 = l n ∣ x + x 2 − a 2 ∣ + C   ∫ d x ( x 2 − a 2 ) 3 = − x a 2 x 2 − a 2 + C   ∫ x x 2 − a 2 d x = x 2 − a 2 + C   ∫ x ( x 2 − a 2 ) 3 d x = − 1 x 2 − a 2 + C \int \frac{dx}{\sqrt{x^2-a^2}}=ln|x+\sqrt{x^2-a^2}|+C\\\ \\ \int \frac{dx}{\sqrt{(x^2-a^2)^3}}=-\frac{x}{a^2\sqrt{x^2-a^2}}+C\\\ \\ \int \frac{x}{\sqrt{x^2-a^2}}dx=\sqrt{x^2-a^2}+C\\\ \\ \int \frac{x}{\sqrt{(x^2-a^2)^3}}dx=-\frac{1}{\sqrt{x^2-a^2}}+C x2a2 dx=lnx+x2a2 +C (x2a2)3 dx=a2x2a2 x+C x2a2 xdx=x2a2 +C (x2a2)3 xdx=x2a2 1+C


∫ d x a 2 − x 2 = a r c s i n ( x a ) + C   ∫ d x ( a 2 − x 2 ) 3 = x a 2 a 2 − x 2 + C   ∫ x a 2 − x 2 d x = − a 2 − x 2 + C   ∫ x ( a 2 − x 2 ) 3 d x = 1 a 2 − x 2 + C \int \frac{dx}{\sqrt{a^2-x^2}}=arcsin(\frac{x}{a})+C\\\ \\ \int \frac{dx}{\sqrt{(a^2-x^2)^3}}=\frac{x}{a^2\sqrt{a^2-x^2}}+C\\\ \\ \int \frac{x}{\sqrt{a^2-x^2}}dx=-\sqrt{a^2-x^2}+C\\\ \\ \int \frac{x}{\sqrt{(a^2-x^2)^3}}dx=\frac{1}{\sqrt{a^2-x^2}}+C a2x2 dx=arcsin(ax)+C (a2x2)3 dx=a2a2x2 x+C a2x2 xdx=a2x2 +C (a2x2)3 xdx=a2x2 1+C


∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 l n ( x + x 2 + a 2 ) + C   ∫ x 2 − a 2 d x = x 2 x 2 − a 2 − a 2 2 l n ( x + x 2 − a 2 ) + C   ∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 a r c s i n ( x a ) + C \int \sqrt{x^2+a^2} dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}ln(x+\sqrt{x^2+a^2})+C\\\ \\ \int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}ln(x+\sqrt{x^2-a^2})+C\\\ \\ \int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}arcsin(\frac{x}{a})+C x2+a2 dx=2xx2+a2 +2a2ln(x+x2+a2 )+C x2a2 dx=2xx2a2 2a2ln(x+x2a2 )+C a2x2 dx=2xa2x2 +2a2arcsin(ax)+C


积 分 中 值 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) , a < ξ < b   积 分 第 一 中 值 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x , a < ξ < b   f ( x ) 是 以 T 为 周 期 的 非 负 连 续 函 数 lim ⁡ x → + ∞ ∫ 0 x f ( t ) d t x = ∫ 0 T f ( x ) d x T   某 个 重 要 的 积 分 ∫ 0 x ( x − t ) f ( t ) d t = ∫ 0 x ( ∫ 0 t f ( u ) d u ) d t   积分中值\\ \int_a^b f(x)dx = f(\xi)(b-a), a<\xi<b\\\ \\ 积分第一中值\\ \int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx, a<\xi<b\\\ \\ f(x)是以T为周期的非负连续函数\\ \lim_{x\to+\infty}\frac{\int_0^xf(t)dt}{x}=\frac{\int_0^Tf(x)dx}{T}\\\ \\ 某个重要的积分\\ \int_0^x (x-t)f(t)dt=\int_0^x(\int_0^tf(u)du)dt\\\ \\ abf(x)dx=f(ξ)(ba),a<ξ<b abf(x)g(x)dx=f(ξ)abg(x)dx,a<ξ<b f(x)Tx+limx0xf(t)dt=T0Tf(x)dx 0x(xt)f(t)dt=0x(0tf(u)du)dt 


、 、 区 间 再 现 、 、   平 移 : ∫ a b f ( x ) d x = ∫ a − c b − c f ( x + c ) d x   移 到 原 点 : ∫ a b f ( x ) d x = ∫ − b − a 2 b − a 2 f ( x + a + b 2 ) d x   区 间 压 半 : ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x   奇 偶 分 解 : f ( x ) = 1 2 [ f ( x ) + f ( − x ) ] + 1 2 [ f ( x ) − f ( − x ) ]   区 间 翻 转 : ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x 、、\bm{区间再现}、、\\\ \\ 平移:\int_{a}^{b}f(x)dx=\int_{a-c}^{b-c}f(x+c)dx\\\ \\ 移到原点:\int_a^b f(x)dx = \int_{-\frac{b-a}{2}}^{\frac{b-a}{2}}f(x+\frac{a+b}{2})dx\\\ \\ 区间压半:\int_{-a}^a f(x)dx = \int_0^a [f(x)+f(-x)]dx\\\ \\ 奇偶分解:f(x) = \frac{1}{2}[f(x)+f(-x)]+ \frac{1}{2}[f(x)-f(-x)]\\\ \\ 区间翻转: \int_a^b f(x)dx = \int_a^b f(a+b-x)dx  :abf(x)dx=acbcf(x+c)dx abf(x)dx=2ba2baf(x+2a+b)dx aaf(x)dx=0a[f(x)+f(x)]dx f(x)=21[f(x)+f(x)]+21[f(x)f(x)] abf(x)dx=abf(a+bx)dx
区 间 上 压 半 公 式 ; ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x = ∫ a + b 2 b [ f ( x ) + f ( a + b − x ) ] d x = ∫ a b f ( x ) d x 区间上压半公式;\int_a^{\frac{a+b}{2}} [f(x)+f(a+b-x)]dx = \int_{\frac{a+b}{2}}^b [f(x)+f(a+b-x)]dx = \int_a^bf(x)dx a2a+b[f(x)+f(a+bx)]dx=2a+bb[f(x)+f(a+bx)]dx=abf(x)dx


线面积分

一 型 曲 线 积 分 ( 标 量 场 积 分 )   ∫ L f ( x , y ) d s = ∫ a b f ( x , y ( x ) ) 1 + ( y ′ ( x ) ) 2 d x   = ∫ a b f ( x ( t ) , y ( t ) ) ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 d t   = ∫ α β f ( r c o s θ , r s i n θ ) r 2 + ( r ′ ) 2 d θ   一 型 曲 面 积 分   ∬ Σ f ( x , y , z ) d S = ∬ D x y f ( x , y , z ( x , y ) ) 1 + ( z x ′ ) 2 + ( z y ′ ) 2 d x d y 一型曲线积分(标量场积分)\\\ \\ \int_L f(x, y)ds = \int_a^b f(x, y(x))\sqrt{1+(y'(x))^2}dx\\\ \\ =\int_a^bf(x(t),y(t))\sqrt{(x'(t))^2+(y'(t))^2}dt\\\ \\ =\int_{\alpha}^{\beta} f(rcos\theta, rsin\theta)\sqrt{r^2+(r')^2}d\theta\\\ \\ 一型曲面积分\\\ \\ \iint_{\Sigma}f(x,y,z)dS= \iint_{Dxy} f(x,y,z(x,y)) \sqrt{1+(z_x')^2+(z_y')^2}dxdy 线 Lf(x,y)ds=abf(x,y(x))1+(y(x))2 dx =abf(x(t),y(t))(x(t))2+(y(t))2 dt =αβf(rcosθ,rsinθ)r2+(r)2 dθ  Σf(x,y,z)dS=Dxyf(x,y,z(x,y))1+(zx)2+(zy)2 dxdy


二 型 曲 线 积 分 ( 矢 量 场 路 径 积 分 )   单 变 量 处 理 :   ∫ L a b P ( x , y ) d x + Q ( x , y ) d y = ∫ α β [ P ( x ( t ) , y ( t ) ) x ′ ( t ) + Q ( x ( t ) , y ( t ) ) y ′ ( t ) ] d t   格 林 公 式 ( 退 化 的 斯 托 克 斯 公 式 ) :   ∮ L P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y   只 要 该 矢 量 场 保 守 ( 无 旋 ) 就 可 以 用 路 径 替 换 法 求 积 分 , 参 考 矢 量 分 析 二型曲线积分(矢量场路径积分)\\\ \\ 单变量处理:\\\ \\ \int_{L_{ab}}P(x,y)dx+Q(x,y)dy=\int_\alpha^\beta [P(x(t), y(t))x'(t)+Q(x(t), y(t))y'(t)]dt\\\ \\ 格林公式(退化的斯托克斯公式):\\\ \\ \oint_L Pdx+Qdy=\iint_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy \\\ \\ 只要该矢量场保守(无旋)就可以用路径替换法求积分,参考矢量分析 线  LabP(x,y)dx+Q(x,y)dy=αβ[P(x(t),y(t))x(t)+Q(x(t),y(t))y(t)]dt (退) LPdx+Qdy=D(xQyP)dxdy 
二 型 曲 面 积 分 ( 矢 量 场 通 量 积 分 )   ∬ Σ R ( x , y , z ) d x d y = ± ∬ D x y R ( x , y , z ( x y ) ) d x d y   其 中 Σ 取 上 侧 、 前 侧 、 右 侧 , 右 边 取 +   高 斯 散 度 定 理 ( 高 斯 公 式 )   ∯ Σ P d y d z + Q d z d x + R d x d y = ∭ Ω [ ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ] d x d y d z   一 二 型 曲 面 积 分 转 换   ∬ Σ P d y d z + Q d z d x + R d x d y = ± ∬ D x y [ P ⋅ ( − z x ′ ) + Q ⋅ ( − z y ′ ) + R ] d x d y       空 间 二 型 曲 线 积 分 ( 空 间 矢 量 场 路 径 积 分 )   斯 托 克 斯 公 式 , 具 体 参 考 矢 量 分 析 公 式 大 全 二型曲面积分(矢量场通量积分)\\\ \\ \iint_\Sigma R(x,y,z)dxdy = \pm\iint_{D_{xy}} R(x,y,z(xy))dxdy\\\ \\ 其中\Sigma 取上侧、前侧、右侧,右边取+\\\ \\ 高斯散度定理(高斯公式)\\\ \\ \oiint_\Sigma Pdydz+Qdzdx+Rdxdy=\iiint_\Omega[\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}]dxdydz\\\ \\ 一二型曲面积分转换\\\ \\ \iint_\Sigma Pdydz+Qdzdx+Rdxdy=\pm\iint_{D_{xy}}[P\cdot(-z_x')+Q\cdot(-z_y')+R]dxdy\\\ \\ \\\ \\ \\\ \\ 空间二型曲线积分(空间矢量场路径积分)\\\ \\ 斯托克斯公式,具体参考矢量分析公式大全  ΣR(x,y,z)dxdy=±DxyR(x,y,z(xy))dxdy Σ   ΣPdydz+Qdzdx+Rdxdy=Ω[xP+yQ+zR]dxdydz  ΣPdydz+Qdzdx+Rdxdy=±Dxy[P(zx)+Q(zy)+R]dxdy   线 
--------------------------------------------------------------工科矢量分析公式大全

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值