Description
有 m m m 座煤矿,每一座煤矿有 a i a_i ai 吨煤,第 i i i 座煤矿到第 j j j 号发电厂的运费为 c i , j c_{i,j} ci,j 每吨。
有一座发电厂(标号为 0
),需要恰好
b
b
b 吨煤矿发电,初始运行费用为
h
h
h。还有
n
n
n 座待运行的发电厂(标号为 1~n
),每座发电厂初始运行费用为
h
i
h_i
hi,你需要选择其中一座让它运行起来。
将所有煤分给这两座发电厂,问最小费用是多少。
Solution
这道题的题目描述就是第一个坑,注意以下几点:
0
号发电站一定要运行,原题面可能有些表述模糊。- 对于新的发电站,它分配到的煤为 t o t − b tot-b tot−b(其中 t o t = ∑ i = 1 m a i tot=\sum \limits_{i=1}^m a_i tot=i=1∑mai)吨,而不是 b b b 吨。
发现 1 ≤ m ≤ 5 × 1 0 4 , 1 ≤ n ≤ 50 1\le m\le5\times10^4,1\le n\le50 1≤m≤5×104,1≤n≤50,所以遍历 n n n 座发电厂,每次遍历所有煤矿,比较选当前的发电厂时的费用是可以过的。
假设当前遍历到 i i i 号发电厂,若所有煤都在这个发电厂,费用为 ∑ j = 1 m a j × c j , i \sum\limits_{j=1}^m a_{j}\times c_{j,i} j=1∑maj×cj,i 。
因为 0
号发电厂要选
b
b
b 吨,所以费用为
∑
j
=
1
m
a
j
×
c
j
,
i
−
∑
k
=
1
t
a
k
×
(
c
k
,
i
−
c
k
,
0
)
\sum\limits_{j=1}^m a_{j}\times c_{j,i}-\sum\limits_{k=1}^t a_k\times(c_{k,i}-c_{k,0})
j=1∑maj×cj,i−k=1∑tak×(ck,i−ck,0)(后面的都是转到 0
号去了)。为了最小化费用,所以要让
c
k
,
i
−
c
k
,
0
c_{k,i}-c_{k,0}
ck,i−ck,0 尽量大,按这个值对每一座煤矿进行排序。然后遍历煤矿,如果还加的进 0
号(可能整座煤矿加不进,只加的进一部分,需要判断每次加入前 0
号的剩余空间)就加,加不进就加到
i
i
i 号。
然后比较每一座发电站的费用大小即可。
Code
#include<bits/stdc++.h>
using namespace std;
int m,b,h,n;
int a[50050],w[60],c[60][50050];
struct node{
int no,val;
}d[50050];
bool cmp(node x,node y){
return x.val>y.val;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>m>>b>>h>>n;
for(int i=1;i<=m;i++){
cin>>a[i];
}
for(int i=1;i<=n;i++){
cin>>w[i];
}
for(int i=0;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>c[i][j];
}
}
int minn=1000000000,ans=0;
for(int i=1;i<=n;i++){
int tot=0,sum=h+w[i]; //运行费用别忘了
for(int j=1;j<=m;j++){
d[j].no=j;
d[j].val=c[i][j]-c[0][j];
}
sort(d+1,d+1+m,cmp);
int j=1;
for(j;j<=m;j++){
if(b-tot<=a[d[j].no]){ //放不进整座
sum+=(b-tot)*c[0][d[j].no];
sum+=(a[d[j].no]-b+tot)*c[i][d[j].no];
break;
}
sum+=a[d[j].no]*c[0][d[j].no];
tot+=a[d[j].no]; //更新剩余空间
}
j++;
for(j;j<=m;j++){
sum+=a[d[j].no]*c[i][d[j].no];
}
if(sum<minn){
minn=sum;
ans=i;
}
}
cout<<ans<<endl<<minn<<endl;
return 0;
}