YOLO格式标签转换为COCO格式

这段代码主要用于将YOLO格式的图像标签转换为COCO标准格式。它读取类别文件,创建类别列表,然后遍历图片文件夹,读取每个图片及其对应的TXT标注文件,将信息转换并写入JSON文件。转换过程中涉及图像尺寸的调整和boundingbox坐标转换。
摘要由CSDN通过智能技术生成
import os
import json

import random
import time
from PIL import Image

coco_format_save_path='./coco/train'   #要生成的标准coco格式标签所在文件夹
yolo_format_classes_path='./names.txt'     #类别文件,一行一个类
yolo_format_annotation_path='./labels/val/'  #yolo格式标签所在文件夹
img_pathDir = './images/val/'    #图片所在文件夹

with open(yolo_format_classes_path,'r') as fr:                               #打开并读取类别文件
    lines1=fr.readlines()
# print(lines1)
categories=[]                                                                 #存储类别的列表
for j,label in enumerate(lines1):
    label=label.strip()
    categories.append({'id':j+1,'name':label,'supercategory':'Nodule'})         #将类别信息添加到categories中
# print(categories)

write_json_context=dict()                                                      #写入.json文件的大字典
write_json_context['info']= {'description': '', 'url': '', 'version': '', 'year': 2022, 'contributor': '纯粹ss', 'date_created': '2022-07-8'}
# write_json_context['licenses']=[{'id':1,'name':None,'url':None}]
write_json_context['licenses']=[{'id':1}]
write_json_context['categories']=categories
write_json_context['images']=[]
write_json_context['annotations']=[]

#接下来的代码主要添加'images'和'annotations'的key值
imageFileList=os.listdir(img_pathDir)                                           #遍历该文件夹下的所有文件,并将所有文件名添加到列表中
for i,imageFile in enumerate(imageFileList):
    imagePath = os.path.join(img_pathDir,imageFile)                             #获取图片的绝对路径
    image = Image.open(imagePath)                                               #读取图片,然后获取图片的宽和高
    W, H = image.size

    img_context={}                                                              #使用一个字典存储该图片信息
    #img_name=os.path.basename(imagePath)                                       #返回path最后的文件名。如果path以/或\结尾,那么就会返回空值
    img_context['file_name']=imageFile
    img_context['height']=H
    img_context['width']=W
    img_context['date_captured']='2022-07-8'
    img_context['id']=i                                                         #该图片的id
    img_context['license']=1
    img_context['color_url']=''
    img_context['flickr_url']=''
    write_json_context['images'].append(img_context)                            #将该图片信息添加到'image'列表中


    txtFile= imageFile.split('.')[0]+'.txt'
    #获取该图片获取的txt文件
    if os.path.exists(os.path.join(yolo_format_annotation_path,txtFile)):
        with open(os.path.join(yolo_format_annotation_path,txtFile),'r') as fr:
            lines=fr.readlines()                                                   #读取txt文件的每一行数据,lines2是一个列表,包含了一个图片的所有标注信息
        for j,line in enumerate(lines):

            bbox_dict = {}                                                          #将每一个bounding box信息存储在该字典中
        # line = line.strip().split()
        # print(line.strip().split(' '))

            class_id,x,y,w,h=line.strip().split(' ')                                          #获取每一个标注框的详细信息
            class_id,x, y, w, h = int(class_id), float(x), float(y), float(w), float(h)       #将字符串类型转为可计算的int和float类型

            xmin=(x-w/2)*W                                                                    #坐标转换
            ymin=(y-h/2)*H
            xmax=(x+w/2)*W
            ymax=(y+h/2)*H
            w=w*W
            h=h*H

            bbox_dict['id']=i*10000+j                                                         #bounding box的坐标信息
            bbox_dict['image_id']=i
            bbox_dict['category_id']=class_id+1
            # #注意目标类别要加一
            # category = {}
            # category['category_id']=class_id+1
            # category['name'] = 'Nodule'
            # bbox_dict['category'] = category
            bbox_dict['iscrowd']=0
            height,width=abs(ymax-ymin),abs(xmax-xmin)
            bbox_dict['area']=height*width
            bbox_dict['bbox']=[xmin,ymin,w,h]
            bbox_dict['segmentation']=[[xmin,ymin,xmax,ymin,xmax,ymax,xmin,ymax]]
            write_json_context['annotations'].append(bbox_dict)                               #将每一个由字典存储的bounding box信息添加到'annotations'列表中

name = os.path.join(coco_format_save_path,"val_6354"+ '.json')
with open(name,'w') as fw:                                                                #将字典信息写入.json文件中
    json.dump(write_json_context,fw,indent=2)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值