算法导论J 跳台阶(动态规划)

题目:

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

输入

多组测试样例。每组测试样例包含一个整数n。(1<=n<=100)

输出

每组测试样例输出一行,表示青蛙跳上n级台阶的跳法数量.

所得到的结果模1000000007

样例输入 Copy
3
4
样例输出 Copy
3
5

解析:

简单的动态规划,dp[i]表示到第i个台阶有多少种跳法,跳上第i个台阶无非有两种情况,第一种是从i-1跳一级上来。第二种是从i-2跳两级上来。求算dp[i]只需把dp[i-1]和dp[i-2]加起来就行了。

代码:

#include<iostream>
using namespace std;
#define int long long
const int P = 1000000007;
int dp[110];
signed main()
{
	dp[1] = 1;dp[2] = 2;
	for(int i=3;i<=100;i++)
		dp[i] = (dp[i-1]+dp[i-2])%P;
	int x;
	while(cin>>x)
		cout<<dp[x]<<'\n';
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

owooooow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值