爬虫案例3——爬取彩票双色球数据

简介:个人学习分享,如有错误,欢迎批评指正

任务从500彩票网中爬取双色球数据

目标网页地址:https://datachart.500.com/ssq/

一、思路和过程

目标网页具体内容如下:
​​​​​
在这里插入图片描述

我们的任务是将上图中红色、蓝色两种颜色球的数字按行爬取下来。

1.定义目标URL

由于网页普遍具有反爬程序,不加修饰的直接访问网页可能会失败,所以第一步学会伪装自己。
如何伪装自己呢,可以通过找到正常访问网页时的访问状态,将自己的这次爬虫模拟成一次正常访问网页,因此我们的目标是找到正常访问网页时的User-Agent。User Agent中文名为用户代理,(简称 UA,它是一个特殊字符串头,使得服务器能够识别客户使用的操作系统及版本、CPU 类型、浏览器及版本、浏览器渲染引擎、浏览器语言、浏览器插件等)。User-Agent就是你访问网页的身份证明。具体操作如下:

首先打开目标(/任意)网页,然后点击鼠标右键后选择检查打开网页的HTML 页面。
在这里插入图片描述

在HTML 页面里面依次点击网络,然后任意点一条网络请求(如果没有显示任何网络请求可以点击网页左上角的刷新),然后选择标头,下拉列表找到User-Agent,User-Agent后面那段内容就是我们用来伪装自己的身份码。

在这里插入图片描述

2.发送GET请求获取网页内容

通过上面的步骤我们获得了
url = ‘https://datachart.500.com/ssq/’

User-Agent:‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36 Edg/126.0.0.0’

接下来发起网页访问请求,代码如下:

import requests  # 引入requests库,用于发送HTTP请求
from lxml import etree  # 引入lxml库中的etree模块,用于解析HTML文档

# 定义目标URL,即要爬取的网页地址
url = 'https://datachart.500.com/ssq/'

# 定义HTTP请求头,其中包括User-Agent信息,用于伪装成浏览器进行访问
headers = {
   
    'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36 Edg/126.0.0.0'
}

# 发送GET请求获取网页内容,并将响应内容存储在resp变量中
resp = requests.get(url, headers=headers)
# 设置响应内容的编码格式为gbk,确保中文字符正常显示
resp.
Python爬虫基础案例通常从简单的网页抓取开始,比如爬取猫眼电影的数据。这里以`requests`库获取网页内容,然后用`BeautifulSoup`解析HTML,提取所需信息,并通过`pandas`将数据保存到Excel文件为例: 首先,你需要安装必要的库: ```bash pip install requests beautifulsoup4 pandas openpyxl ``` 下面是一个基本的Python爬虫脚本示例,假设我们要爬取电影名称、评分和主演信息: ```python import requests from bs4 import BeautifulSoup import pandas as pd # 爬取URL url = "https://maoyan.com/board/4" response = requests.get(url) # 解析HTML soup = BeautifulSoup(response.text, 'lxml') # 查找需要的数据元素,这里假设电影列表在class为'movie-list' movies_data = soup.find_all(class_='movie-list') # 创建空列表存储数据 data_list = [] # 遍历每部电影 for movie in movies_data: title = movie.find('a', class_='title').text rating = movie.find('i', class_='rating_num')['title'] stars = ', '.join(movie.find_all('span', class_='name')) # 将数据添加到列表 data_list.append([title, rating, stars]) # 将数据转换为DataFrame df_movies = pd.DataFrame(data_list, columns=['电影名称', '评分', '主演']) # 保存到Excel文件 filename = '猫眼电影数据.xlsx' df_movies.to_excel(filename, index=False) ``` 这个例子中,爬虫会定期访问指定的猫眼电影页面,提取每个电影的基本信息,然后将其保存到一个名为`猫眼电影数据.xlsx`的Excel文件中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值