DeepSeek V3:新晋国产 AI 之光,实至名归

在国产 AI 领域,DeepSeek 绝对是一个独特的存在。它既不像 Kimi 和豆包那样铺天盖地打广告,但凡是体验过其模型的人,都会对其性能赞不绝口。DeepSeek 专注于 AI 模型底层技术的研究,凭借卓越的技术实力,在国内外都收获了一批忠实拥趸。

DeepSeek

DeepSeek:低调而强大的 AI 技术先锋

DeepSeek 是一家专注于 AI 模型底层技术的公司,它在宣传方面非常低调,几乎没有任何广告,但凭借口口相传,在国内外都拥有了一批粉丝,被誉为“来自东方的神秘力量”。DeepSeek 的产品也十分简洁,网页版只有一个 logo 和输入框。

然而,DeepSeek 在模型方面却取得了显著成就。它率先在国内打响了大模型价格战,并陆续发布了通用模型 DeepSeek V2、DeepSeek V2.5 和 DeepSeek V3。此外,DeepSeek 还发布了一系列视觉模型和一个推理模型 DeepSeek-R1-Lite,后者被认为是国内首个对标 o1 的推理模型。

DeepSeek V3:全新升级的通用模型

DeepSeek V3 是 DeepSeek 最新发布的通用模型,并已正式开源。

技术指标

DeepSeek V3:全新升级的通用模型

  • MoE 架构: DeepSeek-V3 采用了自主研发的 MoE(Mixture-of-Experts)架构,模型参数高达 671B,激活参数为 37B。这意味着在实际推理过程中,每个 token 仅激活其中的 37B 参数,在保证性能的同时提升了推理效率。相较于开源模型中的王者 Llama 3.1 (405B 参数),DeepSeek-V3 的参数量多了一半。
  • FP8 混合精度训练: DeepSeek-V3 在训练过程中使用了 FP8 混合精度训练,并首次在如此超大规模的模型上验证了 FP8 训练的可行性和有效性。
  • 高效训练: 通过算法、框架和硬件层面的协同设计,DeepSeek 克服了跨节点 MoE 训练中的通信瓶颈,实现了近乎完全的计算与通信重叠,从而提高了训练效率,大幅降低了训练成本。DeepSeek-V3 最终在 14.8 万亿 tokens 的数据集上完成了预训练,仅消耗 266 万 H800 GPU 小时。
性能表现

性能表现

  • 基准测试: DeepSeek-V3 在基准测试中表现出色,成功超越了 Qwen2.5-72B 和 Llama-3.1-405B 等开源模型。在闭源模型方面,DeepSeek-V3 与 GPT-4o (0513 版本) 和 Claude-3.5-Sonnet 打得有来有回。
  • 代码能力: DeepSeek 系列模型一直以代码能力著称,DeepSeek-V3 的代码能力几乎可以和 Claude-3.5-Sonnet 相媲美。
  • 响应速度: DeepSeek-V3 的生成速度从 20TPS 大幅提高至 60TPS,相较于前代模型 2.5 实现了 3 倍提升。

如何使用 DeepSeek V3

您可以通过以下三种方式体验 DeepSeek-V3 模型:

  • 在线体验: 登录 DeepSeek 官网 https://chat.deepseek.com/,即可在线使用,还可体验联网搜索和推理模式。
    API 调用

  • API 调用: DeepSeek 提供 API 接口,方便有定制化需求的用户使用。DeepSeek-V3 API 价格为每百万输入 tokens 2 元(缓存未命中),每百万输出 tokens 8 元,单位为人民币。在明年 2 月 8 日前有优惠。

  • 本地部署: 本地部署的灵活性更高,可完全控制,适用于对性能、安全性、隐私有较高要求的用户。

相关链接

结语

DeepSeek 在国产 AI 领域无疑是一股清流。它专注于技术研发,以卓越的模型性能赢得了用户的认可。DeepSeek V3 的发布,更是展现了 DeepSeek 在 AI 领域的领先地位。如果您对 AI 技术感兴趣,不妨亲自体验一下 DeepSeek V3,感受其强大的性能。

想让 AI 帮你写文章、做图、分析数据?ChatTools 汇集各类 AI 工具 (含 Gemini, DeepSeek, GPT-4o, GPT 等模型),一站式解决你的需求!

### 关于 DeepSeek V3 的本地部署方法 #### 准备工作 为了成功部署 DeepSeek V3,需要准备足够的硬件资源和支持环境。根据官方说明[^3],DeepSeek V3 优化后的模型大小约为671B,在FP8训练模式下预计占用约700GB显存。 #### 安装依赖库 确保安装所有必要的 Python 库和其他依赖项。通常这可以通过 pip 或 conda 来完成。建议创建一个的虚拟环境来管理这些包: ```bash conda create -n deepseek_env python=3.9 conda activate deepseek_env pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` #### 获取并配置 DeepSeek Coder V2 项目源码 虽然提到的是 DeepSeek Coder V2, 不过其基础架构可能适用于V3版本。可以从指定仓库获取最版源代码: ```bash git clone https://gitcode.com/gh_mirrors/de/DeepSeek-V2.git cd DeepSeek-Coder-V2 ``` 对于内存不足的情况,可调整 `deepspeed` 配置文件中的某些参数以适应较小规模的 GPU 显存容量[^2]: - 调整 `stage3_prefetch_bucket_size` - 设置合适的 `stage3_max_reuse_distance` 以上操作有助于降低对GPU显存的需求量。 #### 下载预训练权重 由于 DeepSeek V3 只提供了 FP8 权重,下载时需要注意选择正确的链接,并将其放置到合适的位置以便加载。 #### 启动服务端口 启动服务器之前,请确认所有的设置都已经按照需求进行了适当调整。一般情况下会有一个简单的命令用于启动应用: ```bash python app.py --model_path ./models/fp8_weights/ ``` 上述过程概括了 DeepSeek V3 的基本部署流程;具体细节可能会因实际应用场景而有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值