Cherry Studio + MCP协议:开启AI开发“即插即用”新时代

AI模型集成难题?MCP协议:连接一切的桥梁

在AI开发过程中,你是否经常遇到以下挑战:

  • AI模型访问本地文件,需要编写复杂的代码?
  • AI模型调用API,需要处理繁琐的HTTP请求?
  • AI模型抓取网页数据,需要自行开发爬虫?

每次都需要针对不同的数据源和工具编写适配代码,费时费力!

现在,Cherry Studio与MCP(模型上下文协议)的结合,将彻底改变这一现状!

MCP协议:AI模型的统一接口

MCP协议

如果将AI模型比作一个功能强大的处理器,那么MCP协议就像一个统一的接口,它可以连接各种外部资源(数据源和工具),让AI模型轻松获取所需的信息和能力。

AI模型的“万能插座”

MCP协议的核心优势:

  • 即插即用:无论是本地文件、数据库,还是云端API,只需接入MCP,即可直接使用,无需编写适配代码。
  • 热插拔:运行时可随时添加或移除数据源,系统自动识别,无需重启服务。
  • 统一接口:MCP协议支持连接各种类型的AI模型和工具,实现真正的互操作性。

Cherry Studio + MCP:3分钟上手,效率倍增!

效率起飞!

接下来,我将详细介绍如何在Cherry Studio中配置和使用MCP,带你体验AI开发的便捷与高效!

1. 准备工作
  • 安装最新版Cherry Studio

    • 目前官方网站(cherry-ai.com)的最新版本是1.0.6。
    • 要使用MCP功能,需要下载1.1.4版本(测试版,更新前务必备份数据)。
    • 你可以从GitHub下载:https://github.com/CherryHQ/cherry-studio/tags
    • 如果不想自行编译,可以直接下载exe安装包(请参考原文中的“阅读原文”链接)。
  • (可选)版本打包
    如果你想自行编译Cherry Studio,可以参考以下步骤(需要一定的技术基础):

    1. 下载代码。
    2. 打开终端,创建虚拟环境(需预先安装Python)。
     # 创建虚拟环境
     python -m venv venv
    
     # 激活虚拟环境(Windows)
     .\venv\Scripts\activate
    
     # 打包Windows版
     yarn build:win
     
     # 若遇到报错,可尝试先安装yarn
     yarn install
    
     # 再次运行构建命令
     yarn build:win
    

    构建成功后,可在dist目录下找到安装包。

2. 了解MCP传输协议

MCP支持两种传输协议:

  • STDIO(标准输入/输出):在本地运行,支持访问本地文件和应用程序,但需配置Python和NodeJS环境。
  • SSE(服务器发送事件):在远程服务器运行,配置简单,但无法访问本地资源。
3. 基础配置(仅STDIO类型需要)

若仅需使用SSE类型的MCP服务(远程服务),可跳过此部分。若需访问本地文件和应用程序,则需进行以下配置:

Windows环境配置

  1. 安装uv
    打开PowerShell,运行:

    pip install uv
    
  2. 安装Node.js
    访问Node.js官网:https://nodejs.org/en/download
    下载并安装最新版本的Node.js。

  3. 重新打开PowerShell,验证安装:

    bun --version
    node --version
    uv --version
    
4. 配置MCP
  1. 在Cherry Studio中,进入“设置” -> “MCP服务器”,点击“添加服务器”。
  2. 选择所需类型,并点击“添加服务器”。
5. STDIO类型配置示例:Fetch MCP Server

Fetch MCP Server可让LLM从网页中检索和处理内容,并将HTML转换为Markdown格式。

配置步骤:

  1. 在“添加服务器”窗口中,填写:
    • 名称:Fetch MCP Server(或自定义名称)
    • 类型:STDIO
    • 命令uv venv -p python3 && . .venv/bin/activate && pip install -r requirements.txt && python3 server.py
    • Git仓库地址https://github.com/Cherry-Agent/mcp-server-fetch.git
    • 工作目录:留空(Cherry Studio会自动创建)
  2. 点击“确定”。
  3. 回到聊天窗口,可在模型选择栏旁看到已添加的MCP服务。

注意: 若配置后未看到MCP服务,可能是所选模型不支持函数调用。请选择支持函数调用的模型,如硅基流动的模型。

总结:

MCP协议是AI开发领域的一项重要创新,它通过统一的接口连接AI模型与各种资源,实现了“即插即用”的开发体验。

借助Cherry Studio,我们可以轻松配置和使用MCP,无论是本地文件、云端API,还是网页数据,都能高效集成,大幅提升开发效率。

还在为 Midjourney 付费? ChatTools 提供免费无限的 Midjourney 生图体验,同时支持 GPT-4o、Claude 3、Gemini 等多款前沿 AI 模型!

### 如何在Cherry Studio中配置MCP服务 要在Cherry Studio 中成功配置 MCP 服务,可以按照以下方法实现: #### 配置 MCP 服务的基础流程 在 Cherry Studio 或 ChatWise 中使用 MCP 服务相对简单。可以通过 GitHub 上的仓库 `https://github.com/modelcontextprotocol/servers#-reference-servers` 提供的工具来完成基础配置[^1]。 #### 添加 FileSystem 服务的具体步骤 为了具体说明如何添加一个常见的 MCP 文件系统服务,在 Cherry StudioMCP 服务器设置界面中,可搜索模块名为 `@modelcontextprotocol/server-filesystem`。随后,在参数部分输入目标操作目录的路径[^2]。 #### 实现文件查询的功能 通过上述方式配置完成后,用户能够利用该服务执行诸如桌面文件列表查询的操作。例如提问“我桌面上有哪些文件”,AI 将会基于所连接的文件系统返回相应的结果[^3]。 ```python # 示例代码展示如何调用已配置好的 MCP 服务 (伪代码示意) import mcp_client def list_desktop_files(): client = mcp_client.connect('@modelcontextprotocol/server-filesystem', '/path/to/desktop') files = client.list_items() return files desktop_contents = list_desktop_files() print(desktop_contents) ``` 以上代码片段展示了假设情况下如何编写脚本以访问之前设定的文件夹内容。 #### 更多扩展功能探索 除了基本的文件管理系统外,还有许多其他类型的 MCP 服务可供选用。这些资源不仅限于官方文档中的列举项,还可以从专门收集此类插件的站点如 https://smithery.ai/ 寻找更多可能性。只需在 Cherry Studio 内部搜索框键入所需名称便可快速定位并启用它们。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值