08MARL深度强化学习 independent learning

本文介绍了基于值的独立学习算法(如IDQN)在多智能体环境中的局限,如经验回收池的问题。提出了解决方案,如小经验回收池、重要性采样和考虑其他智能体策略的指纹。此外,独立策略梯度方法如A2C在多智能体onpolicy的优势也被讨论,强调其在适应变化环境中的重要性。
摘要由CSDN通过智能技术生成


前言

记录independent learning算法的基础概念,使用一些RL算法训练多智能体


1、Independent Value-based Learning

基于值的独立学习算法:每个智能体根据自身的观测与动作学习价值函数,以IDQN为例,每个智能体根据自身的观测历史学习Q函数,智能体i的损失函数为:
在这里插入图片描述
总的损失函数就是将所有智能体的损失函数进行求和,优化过程为最小化总损失函数与每个智能体的损失函数
在这里插入图片描述
**replay buffer局限:**代表经验收集与再采样的过程,而在IDQN中存在一定问题,因为在多智能体环境中,每个智能体不仅被他们自身的观测与动作所决定,同时受到其他智能体的影响,因此每个智能体的观测与动作会依赖于其他智能体的策略,当采用经验回收池时,假设了经验随着时间具有相关性,而在多智能体环境中,这种相关性会快速过时

**举例解释:**在两个智能体学习围棋的任务中,智能体1采取了特定的策略,短期有较好的收益而长期属于弱策略,智能体2没有采用特定的策略,在刚开始的阶段智能体1会获得奖励而在经验池中存放数据,而随着时间的进行,这些数据在后期并不能带来收益,导致智能体1会持续学习弱策略

解决方法:
小的经验回收池:小的经验回收池使得快速达到容量,因此会移除老的数据,能够降低回收池中经验过时的问题
重要性采样权重(Importance Sampling Weights):经验池储存策略与经验,通过重要性采样的权重校正选择动作的概率
fingerprints of agent policies:拓展每个智能体的观测,使得智能体能够考虑其他智能体的策略的变化

2、Independent Policy Gradient Methods

独立策略梯度方法:通过智能体自身的动作以及奖励计算梯度,并不考虑其他智能体的动作与策略,计算期望回报相对于自身策略的梯度,每个episode通过以下公式更新:在这里插入图片描述
算法流程如下:
在这里插入图片描述
在多智能体环境设定中,on policy相比于off policy具有一定的优势,是因为on policy能够学习最新的经验得到策略,这样智能体会随着其他的智能体策略的改变而得到新的经验,能够不断适应变化的环境,因此在多智能体环境设定中,on policy算法能够持续更新,更加重要

A2C算法:
具有并行环境的A2C算法能够应用到多智能体环境当中,多智能体在多个并行环境当中经过多轮episode具有更高维度的观测,并且动作与奖励等都具有更高的维度,算法流程如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 23
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值