文章目录
前言
多智能体强化学习——博弈论模型
一、博弈分层模型
1.Normal-form game(标准博弈)
标准博弈:
每个智能体采取策略,根据策略采取对应的动作,所有动作组成联合动作空间,每个智能体根据奖励函数与联合动作空间获取奖励。
根据奖励的不同分类
主要分为三类:零和博弈、共同利益博弈、一般和博弈
零和博弈:所有智能体的奖励和为0;共同利益博弈:所有智能体采取相同的动作获取相同的奖励;一般和博弈:不同智能体之间的奖励函数没有关系
repeated Normal-form game
标准博弈描述了多个智能体的单次交互过程,通过重复标准博弈获得多次交互,得到一个序列的博弈过程。在第t个时间步,每个智能体根据随机性的策略采取相应的动作,第t个时间步的策略受到t时刻之前的联合动作的影响, h t = { a 0 , a 1 , . . . . . , a t − 1 } h^t=\{a^0,a^1,.....,a^{t-1}\} ht={ a0,a1,.....,at−1},其中 a t = { a 1 t , a 2 t , . . . . . , a n t } a^t=\{a_1^t,a_2^t,.....,a_n^t\} at={ a1t,a2t,.....,a